
TESTS FOR THE SÜPERADDITIVITY OF FUNCTIONS

A. M. BRUCKNER

1. Introduction. A function/ defined on an interval /= [0, a] is

called superadditive if f(x+y) ^f(x)+f(y) whenever x, y and x+y

are in /. A simple example of a superadditive function is furnished

by a convex function / with/(0) ^0. More generally, a function star-

shaped with respect to the origin is superadditive. Superadditive

functions have been studied by Hille and Phillips [2]1 and Rosen-

baum [3], but tests for superadditivity are not given in those studies.

In this paper we derive conditions for the superadditivity of a func-

tion. Our method is to decompose a function/into several component

functions in a certain manner and to give a condition which states

that the superadditivity of each component function along with the

satisfaction of a side condition guarantees the superadditivity of /.

We then examine questions concerned with the superadditivity of

convexo-concave functions. The results show that the condition is

relatively easy to apply whenever the component functions can be

chosen to be convexo-concave. No other nontrivial sufficient condi-

tions for the superadditivity of a function are known to the author.

2. Minimal superadditive extensions of superadditive functions.

In what follows we will make use of the notion of the minimal super-

additive extension of a superadditive function. This notion has been

studied by the author [l]. We will summarize those results of the

study which will be needed.

Let/be superadditive on [O, a]. Then there exists a function F with

the following properties:

(a) F = /on [0, a],

(b) F is superadditive on [O, =0),

(c) If g is a function satisfying the conditions g=f on  [O, a] and

g is superadditive on [O, «>) then F^g on [O, °o).

F is called the minimal superadditive extension of /.

We will make use of the following

Theorem. Let f be a continuous non-negative superadditive function

on [O, a] and let F be its minimal superadditive extension. For each

xE [0, x>), there exists a finite number of points xi, *»,•••, xu such

that x = xi+x2+ • • ■ +Xn, O^Xi^a for i=l, 2, • ■ ■ , N and F(x)

—f(xi)+f(x2)+ • • • +f(xN). If fis differentiable at two of these points,

say Xj and Xt, then f'(x,) =f'(xk).
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1 Numbers in brackets refer to the bibliography at the end.
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The points Xi, x2, • • • , x# are said to form a decomposition of x.

The distinct nonzero points of the set {xi, x2, • • • , xjy} are called

the members of the decomposition.

3. Decompositions of functions.

Definition. Let/be defined on [0, a]. The functions /i,/*, • • • ,fv

defined on [0, ai], [0, a2], • • • , [0, ap] respectively form a decom-

position of the function/ provided ai+a2+ • ■ ■ +ap = a and

M*),
fiix — ai) +/i(ai), 0 ^ x g ai, Ai < x g ai + a2,

/(*) =

[fpix - <h — «i- • • • - flp_i) +/i(ai) + • • • +/p_i(ap_i),

ai + • • • + flp-i < * â a.

If/1,/2, - • - ,/p form a decomposition for/, we write/=/i A/2 A ■ ■ •

AfP. The functions/i,/2, • • • ,fp are called the component functions

of the decomposition. Geometrically the graph of/is the graph ob-

tained by joining the graphs of /1, /»,•••,/» end-to-end provided

/*(0)=0 and fk continuous k=l, 2, ■ • • , p.

4. A condition for the superadditivity of a function. We now com-

bine the notions described in the preceding two sections.

Theorem 1. Let fi and /2 be non-negative superadditive functions de-

fined on [O, ai] and [O, a2] respectively and let f=jîA/2. Denote by Pi

the minimal superadditive extension of /1. A necessary and sufficient

condition that f be superadditive on  [O, Oi + a2] is that f ^ Pi on

[0, ai+at].

Proof. The necessity of the condition is obvious. Let x, y and x+y

be in the interval [O, ai+a2], with say, x^y. We wish to show

/(x+y) è/(x)+/(y). If x+y^ai, then the validity of this inequality

follows from the superadditivity of/1. So we turn to the case ai <x+y.

If y<ai we have

/(* + y) - fiy) = Pi(* + y)- Fiiy) = F,(«) = fix).

The first inequality follows from the hypothesis and the second from

the superadditivity of Pi. Next, if y ^öi^ x, then we have

fix + y) - fiy) è fiai + x) - /(ai) ^ Fi(«i + x) - Pi(ai) à /(*).
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Here the first inequality follows from the superadditivity of /2, the

second from the hypotheses, and the third from the superadditivity

of F\. Finally, if Oi^x, then

f(x + y)- f(y) = f(x + y)- f(at + y) + f(ai + y) - f(y)

fc/M - f(ai) + f(2ai) -f(ai)

= f(x)+f(2ai) -2f(ai) £/(*),

the inequalities following from the superadditivity of /2.

This completes the proof of Theorem 1.

The following theorem can be obtained from Theorem 1 by an in-

duction argument.

Theorem 2. Letfi,f2, ■ ■ ■ ,fPbe non-negative and superadditive on

[0, ai], [0, a2], • • • , [0, ap] respectively and let f=fi/\f2/\ • • • Afp.
Denoteby FK the minimal superadditive extension of fK,K= 1,2, • • ■ , p.

Then f is superadditive on (0, ai+a2+ • • • +ap) provided fxA • • •

AfP^FKfor each K= 1, 2, • ■ • , p.

5. Convexo-concave functions. The theorems of the preceding sec-

tion are useful only if the components satisfy two requirements: first,

that their superadditivity can be readily checked; and, second, that

their minimal superadditive extensions can be readily obtained. In

this section we see that a convexo-concave function satisfies both

requirements: the superadditivity of a convexo-concave function can

be ascertained by checking only some combinations of x and y in

the inequality defining superadditivity, and the minimal superaddi-

tive extension of a superadditive convexo-concave function can be

calculated using decompositions having at most two members. The

results of this section apply whenever the function whose super-

additivity we wish to establish is decomposable into convexo-concave

component functions.

Definition. A continuous function / defined on [0, a] is called

convexo-concave if there exists a number b, Ofíb^a such that/ is

convex on [0, b] and concave on [b, a].

Theorem 3. Let f be a convexo-concave function defined on the inter-

val 1= [0, a] with f(0)^0. Then a necessary and sufficient condition

that f be superadditive is that maxl6/ [f(x) +f(a — x) ] èf(a).

Proof. The necessity of the condition is obvious. To prove the

sufficiency of the condition, consider the function g defined on the set

T = {(x, y) : 0 ^ x, y, x + y g a]

by
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g(*> y) = /(* + y) - /(*) - f(y).
Our condition states g 2:0 on the set {(x, y): x+y = a). Also, g(0, 0)

2:0 since/(0) $¡0. Now, it is easy to check that g is either increasing,

or decreasing, or increasing and then decreasing in each of the vari-

ables, holding the other variable fixed. Hence, for fixed x, g attains

its minimum at (x, 0) or (x, a — x) and a similar statement holds for

fixed y. It follows that the minimum value of g on T is attained at a

point on the line x+y = a, or at the origin. Thus, g = 0on T and /is

superadditive on [O, a].

Again, let / be convexo-concave on [O, a], /(0) ¿¡0. Let n be any

positive integer such that / is superadditive on the set

i     a    2a n — 1        )
F= <0, — ) — > •••>-0> &( (» = 1 will always work).

inn n )

Define a set 5 in the plane as follows: For each pair/, k of integers,

0^/, k, j-\-k£n — 2 we consider the square which is the convex hull

of the points

(Î      k   \        //+ 1     k   \       (j     * + l   \
\ — a, — a),      I-a, —a),      [ — a,-a)
\n      n   /        \   n n   /        \n n      /

and

//+1     k+l   \
I-a,-a 1.
\    n n      /

Let S be the union of these squares. The points determining the

squares comprising S will be called corners of 5. By using the mono-

tonicity behavior in each variable of the function g defined in Theo-

rem 3, we note that on each square of 5, g attains its minimum at a

corner of the square. Now, since / is superadditive on V, g2t0 on

the corners of S, hence g 2:0 on S. But this implies / is superadditive

on the interval [O, (n — \)a/n\. We have proved

Theorem 4. If the convexo-concave function f defined on [0, a] is

superadditive on the discrete set of points {0, a/n, 2a/n, • ■ ■ ,

(n — \)a/n, a) and /(0)^0, then f is superadditive on the interval

[0, (n-l)a/n].

We can combine Theorems 3 and 4.

Theorem 5. Let f be convexo-concave on [0, a] with /(0)=0. If

f(ka/n)+f((n — k)a/n)^f(a) for some positive integer n and all

k = 0, 1, • • • , n, then f is superadditive on the interval [O, (n — \)a/n\.
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Proof. Let p be a polygonal function whose "vertices" are

(ka/n, f(ka/n)) for k = 0, 1, • • • , n. The function p is convexo-con-

cave on [0, a]. Now, by hypothesis, p(a—x)+p(x) t*p(a) whenever

x = ka/n, k = 0, 1, ■ ■ ■ , n. This implies p(a — x)+p(x)^p(a) for all

xE [0, a]. For a proof of this statement the reader is referred to the

proof of Theorem 8, [l]. By Theorem 3, p is superadditive on [0, a]

so that/ is superadditive on [0, (n — l)a/n] by Theorem 4.

In particular, it is clear from the continuity of / at a, that if the

hypotheses of Theorem 5 are satisfied by every positive integer »,

then/ is superadditive on [0, a].

The minimal superadditive extension of a differentiable strictly

convexo-concave function is easy to compute. Using the theorem of

§2, it is easy to show that if z>a, a decomposition for z can contain

at most two members. If there are two, one must be the end point a,

and the other in the interval of convexity of/. In fact, if the inflection

point is at x = u<a/2, then a decomposition for z must consist of a

single member.
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