TESTS FOR THE SUPERADDITIVITY OF FUNCTIONS
A. M. BRUCKNER

1. Introduction. A function f defined on an interval I=[0, a] is
called superadditive if f(x+y)=f(x)+f(y) whenever x, ¥y and x+y
are in I. A simple example of a superadditive function is furnished
by a convex function f with f(0) £0. More generally, a function star-
shaped with respect to the origin is superadditive. Superadditive
functions have been studied by Hille and Phillips [2]' and Rosen-
baum [3], but tests for superadditivity are not given in those studies.
In this paper we derive conditions for the superadditivity of a func-
tion. Our method is to decompose a function f into several component
functions in a certain manner and to give a condition which states
that the superadditivity of each component function along with the
satisfaction of a side condition guarantees the superadditivity of f.
We then examine questions concerned with the superadditivity of
convexo-concave functions. The results show that the condition is
relatively easy to apply whenever the component functions can be
chosen to be convexo-concave. No other nontrivial sufficient condi-
tions for the superadditivity of a function are known to the author.

2. Minimal superadditive extensions of superadditive functions.
In what follows we will make use of the notion of the minimal super-
additive extension of a superadditive function. This notion has been
studied by the author [1]. We will summarize those results of the
study which will be needed.

Let f be superadditive on [0, a]. Then there exists a function F with
the following properties:

(a) F=fon [0, a],

(b) F is superadditive on [0, «),

(c) If g is a function satisfying the conditions g=f on [0, ¢] and

g is superadditive on [0, ©) then F<gon [0, «).
F is called the minimal superadditive extension of f.
We will make use of the following

THEOREM. Let f be a continuous non-negative superadditive function
on [0, a] and let F be its minimal superadditive extension. For each
x€ [0, »), there exists a finite number of points x1, xe, - - -, Xy such
that x=x1+xs+ - - - +xn, 05x;5a for i=1, 2, .- -, N and F(x)
=f(x1) +f(x2) + - - - +f(xn). If f is differentiable at two of these points,
say x; and x, then f'(x;) =f'(xx).
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The points x;, %3, - - -, x5 are said to form a decomposition of x.
The distinct nonzero points of the set {xi, %3, - - -, v} are called
the members of the decomposition.

3. Decompositions of functions.

DEFINITION. Let f be defined on [0, a]. The functions fi, f2, « « + , f»
defined on [0, a1}, [0, a2], - - -, [0, a,] respectively form a decom-
position of the function f provided a1+a:+ - - - +a,=a and

fl(x):
fa(x — @) + f1(61), 0 S £ £ 01,01 < % S a1+ as,

.................

fla) =

-----------------

.................

fp(x"' g — Gy — * - — Gp-l) +f1(01) + - +fp—1(dp-1),
a4+ -+ apa1<z=a

I f1,fs + + - ,fpform a decomposition for f, we write f=fiAfa A - - *
/\fp- The functions f, fa, - « « , fp are called the component functions
of the decomposition. Geometrically the graph of f is the graph ob-
tained by joining the graphs of fi, fs, - - -, fp end-to-end provided
fx(0)=0 and fi continuous k=1, 2, - - -, p.

4. A condition for the superadditivity of a function. We now com-
bine the notions described in the preceding two sections.

THEOREM 1. Let fi and f: be non-negative superadditive functions de-
fined on [0, a1] and [0, az] respectively and let f=fi/\fo. Denote by F,
the minimal superadditive extension of fi. A necessary and sufficient
condition that f be superadditive on [0, a1 + as] is that f = Fi on
[0, a1+a.].

ProoF. The necessity of the condition is obvious. Let x, y and x+y
be in the interval [0, a:+a;], with say, x<y. We wish to show
flx+9y) 2f(x) +f(¥). If x+y=a,, then the validity of this inequality
follows from the superadditivity of fi. So we turn to the case a; <x-+.
If y<a, we have

flx+19) — fO) 2 Fi(x + 3) — Fi(y) 2 Fi(x) = f(2).

The first inequality follows from the hypothesis and the second from
the superadditivity of Fi. Next, if y=a12=x, then we have

fle+9) = f(o) 2 flar + %) — f(a1) 2 Fi(a1 + ) — Fa(ar) 2 f(2).
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Here the first inequality follows from the superadditivity of f;, the
second from the hypotheses, and the third from the superadditivity
of Fi. Finally, if a1 <x, then

fle+9) = f(o) = flx+ 3) — flar + 3) + fla1 + ¥) — f(9)
2 f(x) — f(a1) + f(2a1) — f(a1)
= f(x) + f(2a1) — 2f(a1) Z f(%),

the inequalities following from the superadditivity of f,.

This completes the proof of Theorem 1.

The following theorem can be obtained from Theorem 1 by an in-
duction argument.

THEOREM 2. Let fi, fa, + * -, fp be non-negative and superadditive on
[0, a1], [0, as], - - -, [0, a,] respectively and let f=fFiNfa\ - - - Nfp.
Denote by Fk the minimal superadditive extension of fxk, K=1,2, - - -, p.
Then f is superadditive on (0, ar+az+ - - - +a,) provided fe N - - -
Nfp2 Fk for each K=1,2, - - -, p.

5. Convexo-concave functions. The theorems of the preceding sec-
tion are useful only if the components satisfy two requirements: first,
that their superadditivity can be readily checked; and, second, that
their minimal superadditive extensions can be readily obtained. In
this section we see that a convexo-concave function satisfies both
requirements: the superadditivity of a convexo-concave function can
be ascertained by checking only some combinations of x and ¥ in
the inequality defining superadditivity, and the minimal superaddi-
tive extension of a superadditive convexo-concave function can be
calculated using decompositions having at most two members. The
results of this section apply whenever the function whose super-
additivity we wish to establish is decomposable into convexo-concave
component functions.

DEFINITION. A continuous function f defined on [0, a] is called
convexo-concave if there exists a number b, 0 =b=<a such that f is
convex on [0, b] and concave on [b, a].

THEOREM 3. Let f be a convexo-concave function defined on the inter-
val I=[0, a] with f(0) 0. Then a necessary and sufficient condition
that f be superadditive is that max.er [f(x) +f(a—x)]Sf(a).

Proor. The necessity of the condition is obvious. To prove the
sufficiency of the condition, consider the function g defined on the set

T={(x75:05z9x+y=<adf
by
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g(x, 9) = flx + 3) — f(@) — f(3).

Our condition states g=0 on the set {(x, y): x+y=a}. Also, g(0, 0)
=0 since f(0) £0. Now, it is easy to check that g is either increasing,
or decreasing, or increasing and then decreasing in each of the vari-
ables, holding the other variable fixed. Hence, for fixed «x, g attains
its minimum at (x, 0) or (x, a —x) and a similar statement holds for
fixed y. It follows that the minimum value of g on T is attained at a
point on the line x+y=a, or at the origin. Thus, gZ0on T and f is
superadditive on [0, a].

Again, let f be convexo-concave on [0, a], f(0) 0. Let » be any
positive integer such that f is superadditive on the set

e 2a n—1 .
V=140,—)—- -, a, a} (n = 1 will always work).
n n n

Define a set .S in the plane as follows: For each pair j, k of integers,
0=j, k, j+k<n—2 we consider the square which is the convex hull
of the points

<j k ) (j+1 k ) (j k+1)
—a,—al, a,—al, —a, a
n n n n n n

(j+1 E+1 )
a, a).

n n

and

Let S be the union of these squares. The points determining the
squares comprising S will be called corners of S. By using the mono-
tonicity behavior in each variable of the function g defined in Theo-
rem 3, we note that on each square of S, g attains its minimum at a
corner of the square. Now, since f is superadditive on V, g=0 on
the corners of S, hence g=0 on S. But this implies f is superadditive
on the interval [0, (#—1)a/n]. We have proved

THEOREM 4. If the comvexo-concave function f defined on [0, a] is
superadditive on the discrete set of points {0, a/n, 2a/n,- - -,
(n—1)a/n, a} and f(0) SO, then f is superadditive on the interval
[0, (n—1)a/n].

We can combine Theorems 3 and 4.

THEOREM 5. Let f be comvexo-concave on [0, a] with f(0)=0. If
f(ka/n)+f((n—k)a/n) <f(a) for some positive integer n and all
k=0,1, - - -, n, then f is superadditive on the interval [0, (n—1)a/n].
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Proor. Let p be a polygonal function whose “vertices” are

(ka/n, f(ka/n)) for k=0, 1, - - -, n. The function p is convexo-con-
cave on [0, a]. Now, by hypothesis, p(a —x) +p(x) Sp(a) whenever
x=ka/n, k=0, 1, - - - , n. This implies p(a —x)+p(x) £p(a) for all

x€ [0, a]. For a proof of this statement the reader is referred to the
proof of Theorem 8, [1]. By Theorem 3, p is superadditive on [0, a]
so that f is superadditive on [0, (#—1)a/n] by Theorem 4.

In particular, it is clear from the continuity of f at @, that if the
hypotheses of Theorem 5 are satisfied by every positive integer n,
then f is superadditive on [0, a].

The minimal superadditive extension of a differentiable strictly
convexo-concave function is easy to compute. Using the theorem of
§2, it is easy to show that if 2>a, a decomposition for z can contain
at most two members. If there are two, one must be the end point a,
and the other in the interval of convexity of f. In fact, if the inflection
point is at x=u <a/2, then a decomposition for z must consist of a
single member.
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