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I. Functions with negative real zeros. A classical theorem of Budan

asserts that the number of zeros of the polynomial

f(z) = ao+ aiz+ ■ ■ ■ + a„zn

in the interval (a, b) is either equal to V(a) — V(b), or less by an even

number, where V(x) is the number of variations of sign in the se-

quence
f(x),f'(x),---,f"Kx).

It is easy to see that the "even number" qualification can be omitted

if all the zeros of /(z) are real, so that in this case we get exact in-

formation on every interval.

In this note we describe a class of entire functions for which the

natural generalization of Budan's rule likewise gives exact informa-

tion about the number of zeros in a real interval. This class K is the

set of entire functions/(z) which are real for real z, have negative real

zeros and positive Taylor coefficients, and are of finite exponential

type. Such functions can be written in any of the forms

(I) /(z) - ¿ a,z> - ¿ -^ * (a,, b, > 0, v = 0,1, • • • ),

(II)' f(z) = AC" fl (l + —) e-°lzn       (zn > 0, n = 1, 2, ■ ■ ■ ),
n=l \ Zn/

(II)" f(z) = A fl(l +-) (zn>0,n=l,2,---).
n-l \ Zn/

Lemma 1. Let f(z)EK. Then

2 2      2 —1
(1) Zi ^ a0(ai — 2a0a2)    .

Proof. Suppose/(z) has the form (II)', i.e., is of genus one. Then

/'(z) A   z        1 A
(2) J-— = a - Z - T——   =c+lZ (-D"Wi*-

/(z) R.1    Z„    1 + Z/Zn m-1

where
CO

j» = E 2» (m = 2)
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and the representation (2) converges for |z| <zi. Matching coeffi-

cients in (2)

—2      2

ffi = ao («i — 2aotti)

and since Oi^zî2, the result follows.1 If /(z) is of genus zero the proof

is identical.

Lemma 2. Let fiz)EK, and let —zpi denote the zero of f(p)(z) nearest

the origin. Then, as p—* °°, zpi—> ».

Proof. Applying Lemma 1 to f-p)(z)EK, we find

2

z„i ^ —— {ip + l)ap+i - (p + 2)a„ap+i)
p + 1

(3) F
bP    (bp+i      bp+i\   J

- — <--J—} (/> = 0, 1,2, •••)•

The quantity in braces is well known to be positive [2, p. 24] and

therefore the bound is nontrivial. Further, since

bp+i       bp+i

bp+i        bp

the sequence {bv+i/bv)ô is a decreasing sequence of positive numbers,

and therefore approaches a limit, which by the ratio test is actually

the type r of f(z). It is now evident that the right member of (3)

tends to + co as p—» », proving the lemma.

Next, if f(z)EK it is well known that [2, p. 24]

/<*-»(*)/<»+»(*) < {/(p)(*)}2

and hence that at any zero of f(p)(x),f(p~1)(x) and/(p+1)(x) have op-

posite signs. Let (a,b) be a fixed, finite interval of the real axis. By

Lemma 2, there is an integer po such that for p^po, the interval

(a, b) is free of zeros of/(p)(z), i.e.,/(p)(z) is of constant sign on (a, b).

For p^po then, the sequence (e.g. [5]) f(x), f'(x), ■ • ■ , /(p>(x) is

a Sturm sequence for (a, b). Hence if F(£i, £2, • • • , £„) denotes the

number of changes of sign in the sequence £i, £2, • • • , £», the number

of zeros of f(z) in (a, b) is

V(f(a),f'(a), ■ • • ,/«(•)) - V(f(b),f'(b), ■ ■ ■ ,/«(*)) = F,(a) - Fp(6)

provided p^po. We have shown

Theorem 1. Letf(z)EK. Then the number of zeros of f(z) in (a, b) is

precisely

1 The idea goes back to Euler; compare [l, p. 500].
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(4) lim {Vn(a) -Vn(b)}.
n->»

We note that for n large enough, Vn(a) — V„(b) is constant, and

that, in particular cases, the size of n which is "large enough" can

be estimated from (3).

Taking b = 0, we find easily

Theorem 2. Let f(z)EK have the Taylor expansion

f(z) = Z c,(z + a)'
r-0

about z= —a. Then the number of zeros of f(z) in (—a, 0) is exactly the

number of changes of sign in the coefficient sequence {c,]q .

II. Generalizations. The hypotheses of positive coefficients and

negative real zeros were really necessary only to insure that Zip—> °o.

Hence the conclusion of Theorem 1 remains true for functions of order

p<2 with only real zeros (of arbitrary signs) and for which | Zip| —■» ».

The behavior of | Zip| has been well studied (e.g. [3; 4]) with the con-

clusion that | zip | does not —* <x> if p > 1, and need not if p ^ 1, as the

example sin tz shows.

Gontcharoff [4] has shown, however, that if p<l, or if p=l,r = 0,

then, for any fixed interval (a, b) there is a sequence {pk} tending to

infinity such that/(p*'(z) is not zero in (a, b). Hence the number of

zeros of a function of zero exponential type (including p<l) with

only real zeros is exactly

V,„(a) - VPk(b),

k being arbitrary. In the absence of any knowledge of the sequence

{pk}, all we can say is that among the numbers { Vn(a)— Vn(b)]ô,

the number of zeros of f(z) in (a, b) appears infinitely often, if f(z)

is of zero exponential type with only real zeros.

In conclusion we give another example of a situation where the

zeros of/(t)(z) ultimately lie outside of any fixed compact set, namely

the case where f(z) is the product of e~az by a polynomial. The main

interest of this result lies in the fact that the asymptotic distribution

of all the zeros of the &th derivative is independent of the polynomial

chosen.

Theorem 3. Let
A A b,

P(z) = X, a->z" = £ —z'
y—0 >—0     V\

be a given polynomial, and let Pn(z) be defined by
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(-)V'P(z)} = (-l)»e-'Pn(z).

Then

1
— lim {n-"Pn(nz) J = (z - 1)".
ap n—►»

Proof. We have

(V)V'P(z)} = e-'¿Cn.*(-l)-*P'*)(z)
\dz/ *_o

and therefore for n^p,

Pn(z)   =   tcM(-l)*?«(!)

,(»)P       zr  P-r P      A

= Z - E (-i)*c„a+* =■ £ —- Z-.
r-o  r! t_o r-o   r!

Hence for each fixed v,

(»)       »'
Op-,'-(-l)'Op («-♦<»)

and the result follows by an obvious calculation.

In particular, if Zu, Zu, • • • , zpk are the zeros of the fcth derivative

of e~'P(z), where P(z) is any polynomial of degree p, then for each

fixed v, zvkr^k (k —» oo). As an example, if p = 2, a more exact calcula-

tion shows that the zeros of Pn(z) are

n±n1'2 + 0(l) (n-»*)

the dependence on P(z) being 0(1).
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