
ON MINIMAL SETS IN THE PLANE

RUSSELL REMAGE, JR.1

This paper gives by example an affirmative answer to two ques-

tions raised by M. L. Cartwright (personal communication). See [l]

The first is based on an example by F. B. Jones of a minimal orbit-

closure in the plane which is locally connected at some points and

not at others (see [2, pp. 139-142]), and asks whether there is an

orientation-preserving homeomorphism of the plane onto itself which

has this set as a minimal orbit-closure. The second may be phrased

"Does there exist an orientation-preserving homeomorphism of the

plane onto itself which admits a minimal orbit-closure with an infinite

number of nondegenerate components?". In the first of the examples

there is also an answer, in the negative, to that part of the question

of Bass, as quoted in [3], which asks whether a minimal orbit-closure

of dimension n — 1 on an «-dimensional manifold is necessarily an

(n — 1)-torus.

We adopt, generally, the notation of [2]. Let x be used to denote a

variable on (R, the real line, and 0 a variable on the unit circle 6,

each with its natural topology. Let « be the mapping of öl onto Q,

defined by w(x) = (1, x) where the right-hand side is in polar coordi-

nates r and 6. Normally, barred symbols will be used when 6 is

involved, unbarred when öt is under consideration. That is, f(x) is a

function on (R;f(6) has domain 6.

Let Xo be a real number, and let/o(x) be a real function continuous

on [xo — it, x0+ir] except at x0, periodic of period 2r, with /0(x0— ir)

=fo(x0+ir), and satisfying the inequality |/o(x)| £1. Let t be a

homeomorphism of (R onto itself, such that r(x+27r) =t(x)+27t. If

ä is the set of all integers, let X„ = <R — {t"(x0) + 2kir/k E &},

X = ClZ„Xn.
The relation /»(x) =/„+i(t(x)), xEX„, serves to define /„(x) for

each nEâ. Let (a„) be a bisequence of constants, positive for con-

venience, such that 53"--« an converges, so that 22"„ anfn(x) con-

verges   uniformly  and   absolutely.   Let   22-» a« = A,  f(x) = 2A

+ X-- «n/n(x).

Theorem 1. If Ni= {(x,/(x))/x£X} and^(x,f(x)) = (T(x).f(T(x))),
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then \[/ and yp~l are uniformly continuous homeomorphisms of the subset

Ni of the plane onto Ni.

The case in which t is a translation by one unit is due to F. B.

Jones. An account may be found on pp. 140-141 of [2]. Theorem 1

follows from Theorem 2 by restricting attention to a= 1.

For nEé, O^a^l, and r~"ix)EXoC\[xo — ir, x0+7r], let

|t-»(x)-*0|
eix,n) =-,

27T

gnix, a) = a[2 +/»(*)] [1 - (1 - «)•<••">]

+ o(l - a) e(iC'n) ;

for nEâ, lèa^2, and T-nix)EX<f\[xo—ir, x0+7r], let

gnix, a) = «[2 + /„(*)] [1 - (a - 1) •<*•»>

+ (2+a) (a- 1) •«•••>

Let the domain of gnix, a) be extended by defining gnix, a) to be peri-

odic of period 27r; gn(x-\-2w, a)=gn(x, a), xEX„, 0^a^2.

For x E X, let g(x, a) = 12-» ctngn(x, a), and let ^(x, g(x, a))

= (t(x), g(r(x), a)).

Theorem 2. ^ and 'ir_1 are uniformly continuous homeomorphisms

of XX [0, 4.4 ] onto itself.

Proof. We first make some observations about gnix, a) and g ix, a).

For xEXn,

(a) gnix, 0) = 0,    gnix, 1) = 2 + /„(*),    *,(*, 2) - 4,

í    a, Oáflgl
(b) lim    gnix, a) - <

i-.r»d,) (2 + a, 1 g a g 2.

For jcGI,

(c) g(x, 0)=0, g(x, l)=/(x), g(x, 2) =44.

(d) For 0ga5¡2, o^l, 5g„(x, a)/da>0, so that g(x, o) is a strictly

increasing function of a.

(e) g(x, a) is a continuous function of x and a on XX [0, 2]; and

for each xG-X", g(x, a) maps an ordinate set {(x, a)/0^a^2} one-to-

one onto an ordinate set {(x, y)/0 ^y ^4A ).

(f) If a^i is fixed, from (b), gn(x, a), as a function of x, has a con-

tinuous extension to (R, as does g(x, a).

(s) ên(r(x), a)=g„-i(x, a), O^ag.2.
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It is immediately clear that ^ is continuous on XX [0, 4^4] and

onto XX [O, 4A ]. We now show that ^ is uniformly continuous, fol-

lowing the line of the argument on pp. 140-141 of [2].

If S£ is not uniformly continuous, there is an e>0 such that for

every 5>0, there are points (x, g(x, a)) and (x', g(x', a')) such that

(1) I x - x' I   < 5    and    | g(x, a) - g(x', a') \   < S,

(2) [(t(x) - t(x'))2 + g(T(x), a) - (g(T(x'), a'))2]1'2 > *.

We may assume 5 so small that, on account of the uniform continuity

of r, |r(x)—t(x')| <e, so that

(3) g(r(x), a) - g(T(x'), a') |   > 6.

Let (5„) be a sequence of positive numbers tending steadily to

zero; and x„, xn', a„, a/, numbers so that, for each «>0, (1) and (3)

are satisfied. We may assume convergence:

lim x„ = x* = lim x„',        lim a„ = a* = lim a/,.

If 0*5^1, say o*<l, we may assume that sup„>0 (an, añ) = b*<l. By

observation (b), we can extend g(x, a) on XX [O, b*] to a periodic

function g(x, a), defined on (RX[0, b*]. Since [ —tt+Xo, t+Xo]

X [0, b*] is compact, g(x, a) is uniformly continuous; hence so also

is g(x, a) on XX [O, b*]. This contradicts (1) and (3) for the sequences

(on), (an), (a„r), (xn), (Xn).

We may now assume that a* = 1; further, on account of the con-

tinuity of ^ on XX [0, 4^4 ], we may assume that x* €£X; there exist,

then, integers k and n such that x* = 2&7r+Tm~1(xo), and on account

of the periodicity we may take x* = rm~1(x0).

Since the series 22-°°» angn(x, a) is uniformly bounded, we can find a

positive integer P such that

(4) 23 «»(«(*"(**')i a¿ ) - in(r(xk), ak)) \   < e/3

and similarly for the range   — °°   to   —P. Since for   —P^n^P,

n^m — l, gn(T(x),a) is continuous at (x*, a*), for sufficiently large k,

otn\ gn(r(x¿), ai) - gn(T(xk), ak) \   < e/12P by (1),

am-i I gm-i(x¿, a¿) — gn(xk, ak) \

(5)
Ú h + 23 oLn(g(x¿, ai ) - gn(xk, ak))

+  23a»(gn(xjfc',a*) - gn(xk,ak))\ + '£lan\gn(xk ,ak) - gn(xk,ak)
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If N is sufficiently large, the last of these can be made less than, say

(am_i/aro)(e/36) for all large k; ii k is sufficiently large the two pre-

ceding sums are also less than (am-i/am)(e/36), and also

5<(am_i/aro)(e/36). We thus have, for k>k0,

c*m-i| gm-i(xi, ai) - gm-i(xk, ak) \ < (ocm-i/an)(e/9).

By (g), however, gm_i(x, a) =gm(r(x), a), so that

(6) am | gm(r(xi), ai) - gm(r(xk), ak) \   < e/9.

Combining inequalities (4), (5), and (6), we have, for sufficiently

large k, | g(r(xi), ai)—g(r(xk), ak) \ <e contradicting (3). This estab-

lishes the uniform continuity of ^, and by the symmetry of the

r, r-1 relation, also of "9~l.

It follows that ^ and ty~l both have unique continuous extensions,

•& and Sr-1 to SIX [0, 44 ], and that both are homeomorphisms.

We now turn to consideration of the unit circle 6 in place of öl,

so that t(x) is replaced by f (6) =wtw_1, ty by V defined by ^(9, g(0, a))

= (f(d), g(f(6), a)), for 6E®, extending to a homeomorphism of the

cylinder 6X[0, 44] onto itself. Let ®n = u(Xn), ®=u(X), 0o=a>(xo).

On the cylinder, let C(a) be the closure of the set {(6, g(6, a))/6E®\,

and denote by \pa the restriction of SF to C(a). Formally, we state

Corollary 1. V is a homeomorphism of the cylinder ex[0, 44]

onto itself, such that each of the sets C(a), for 0 ^a ^ 2 is invariant.

We note that, if a ?¿1, the projection it of C(a) onto 6, defined by

7r(0, g(6, a)) =6, is by observation (f) one-to-one, and thus a homeo-

morphism, so that C(a), as^l, is a simple closed curve.

If a denotes the "stereographic" projection of the cylinder

CX [0, 44 ] onto the compact complex plane (P, so that the points of

exjo) go to the origin 0, ex{24} to the unit circle, CX{44}

to the point at infinity, then a, which is a homeomorphism on

CX {0, 44} - {eXJOJ Wex{44} }, induces a homeomorphism

i = cr'iV-1    on   (P - {0} - {oo },

f (0) = 0.

Clearly $ is orientation-preserving. Thus

Corollary 2. $ is an orientation-preserving homeomorphism of the

plane (P onto itself, with the origin fixed, such that the origin, the set

C(l), and a continuous collection of simple closed curves filling up

<P— {oyJaG(l)} are invariant.
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Similar remarks, of course, can be made for the Riemann sphere

instead of 6°.
Two examples utilizing these results follow. Although the functions

given are specific, it is clear that many others would serve as well.

Example 1. (Transitive Case). In [—ir, 0) and (0, r], let/0(x)

= sin 7T2/x, so that x0 = 0, let/0(x) be periodic of period 27r, and let f

be a rotation of Q by an irrational multiple m of 2r, so that f (6)

= 0+m. Clearly C(a) is a minimal orbit-closure for each a, and SF

is pointwise almost periodic, almost periodic on CX[0, 4^4] —C(l);

C(l) is Jones' set, locally connected at some points but not at others.

The same remarks hold for 4>, furnishing an example of an orbit-

closure of dimension one on a two-dimensional manifold which is not

a torus.

Modifying slightly the notation, it is easy to make an extension to

n dimensions: If S" denotes the «-sphere, let 4> be considered as acting

on S2, and let n be greater than two. Let t¡, j=l, 2, • • • , n — 2 be

homeomorphisms of Sl onto itself. Then, in general,

&(P; 0i, 02, • • • , 0n-2) = (*(£)i Ti(0i), • • • , t„_2(0„_2)) is a homeo-

morphism of the »-manifold 9TC = S2 X S1 X S1 X ■ ■ ■ XS1 = S2XWLn-2

onto itself such that each set C(a) X3TÍ"-2 is invariant. In particular,

if f, fi, f2, • • • , r„_2 are rotations of S1 about the origin through

angles 0, di, 0j, • ■ • , 0n-2 such that no linear combination of 0, di, • • • ,

6n-i and 2r with integral coefficients vanishes, then clearly C(a)

X3TC"-2 is a minimal set, so that C(l) X3TÍ"-2, although of dimension

n — 1, is notan (n—1)-torus.

Example II. (Intransitive Case). Let H be the Cantor ternary

set on [O, 27r], with (2r/3, Ar/3) the largest complementary middle

third, and let K = w(H) be the corresponding set on the unit circle C.

Let p be a rotation of some (other) unit circle by an irrational multiple

m of 27T, and let x be a definite point of this circle. Beginning with I0,

the closure of the arc (2r/3, ir/3) complementary to K, arrange the

closures of the arcs complementary to K in a bisequence to have the

same cyclic order as the bisequence (p"(x)/nE&), choosing cor-

respondents In to x„ in the order I0, h, I-i, I2, I-2, • • • , by choosing

the largest arc available to maintain the proper cyclic order with the

arcs already chosen. Clearly the choice is unique after Ii has been

chosen. Let f be the homeomorphism of the circle C onto itself such

that for each », f(In) =In+i. It is known (see [3]) that K is a minimal

set under f, so that any definite point 60EK is an almost periodic

point under f, and, if T(x) denotes the orbit of x, Cl[T(do)] = K. It

follows that there is a relatively dense subset {nk/kEâ} of ä such

that lim¡t,wín*(0o)=lim*.._ooí"*(0o). Let (rk) be any enumeration of the



46 RUSSELL REMAGE, JR. [February

rational numbers in [ — 1, l] (any dense countable set would serve as

well), and let /o(0o)=O, Jo(rn^(do))=0, 7o(r"*(0o)) =rt, and let /o(0)

be linear between successive pairs of points whose values have been

defined above. In case 0o is an endpoint of an interval /„, first let

fiß) = 0 for 6 Eh - {0o}. As before 7(0) = 24 + £- » otnJn(6), BE @. Let
7*(0) = lim sup9^9/(0'), /*(0) = lim inf9^/(0'), and let Y„
= {(fn(e*),j)/f*(T»(6o))íyúf*(fn(do))}, and let _F=Ur. F„. We

show that F is a minimal set under ty. Let P(0) =/(0) —ao/o(0). The

saltus of anfn(0) at fn(0o) is 2a„. Since P*(0o) = P*(0o), 0o is a point of

continuity of F(6). Let y be any number such that /*(0o) úy^f*(Oo).

There is a sequence (0„) such that 0„£©, and lim f(6n) =y, lim 0„ = 0O.

Let w0 = lim a0fo(On) =y — F*(00). Since | w0| ^a0, there is a sequence

of {f"(0o)}, a subsequence of (t"»(0o)), say (f"'(0o)) such that

lim/o(f^(0o))=wo. Thus, lim/(T"i(0o))=limao/o(fn'(0o))+limP*(f"'(0o)

= Wo+F*(do)=y.

We now conclude that any point of F0 is in the orbit-closure of any

point of F0; since F„ = ^n(F0), seen immediately by taking limits, Y

is contained in the orbit-closure of any point of F0. Since the orbit-

closure of a point is a minimal set if and only if the point is almost

periodic (see [2, p. 3l]), we have only to show that some point of

F0 is almost periodic under ^. Surely the candidate is (0O, F*(60)).

The set {n2k-i/kEa} is relatively dense in á, since {nk/kEä} is. But

lim  ao7o(i"2*-I(öo)) + Hm F*(í"»-i(0o)) = 0 + F*(0O)
t->± » i

so that

lim f*(T"**-i(do)) = F*(6o) =   lim 7*(fs*-1(öo)).
t->± «o t-»± «o

Thus, from the definition of ^r,

lim ^-'(flo, P*(0o)) = (0o, P*(0o))

which establishes the almost periodicity of (0O, P*(0O)).

It is clear that Y, the above minimal set in C(l), contains a bi-

sequence (F„, nE$) of nondegenerate components as well as an un-

countable collection of point components. If Z„ is the homeomorph,

under a, of Fn, the same holds for Z under $. Thus there is a homeo-

morphism of the plane onto itself which is orientation-preserving and

whose collection of minimal sets contains one containing an infinite

number of nondegenerate components. We draw attention also to the

facts that there is one fixed point, the origin, and $ is not almost

periodic on any of the invariant simple closed curves.
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THE KRONECKER PRODUCT OF GRAPHS

PAUL M. WEICHSEL

Introduction. This note considers a graph product derived from the

Kronecker product of matrices. Some indication of the geometrical

nature of this product is given and a theorem stating necessary and

sufficient conditions for a graph product to be connected is proved.

The matrix analogue of the above result is also stated.

I. A convenient representation for a finite undirected graph [l]

G is an adjacency matrix. If the vertex set of G is {pi], i= 1, • • • , »,

then an adjacency matrix of G is an »X« matrix (o„) with a<¿ equal

to the number of lines (paths of length one) joining p{ to p¡. A given

graph is then represented by an equivalence class of matrices

A = {PítIPí"1! for all permutation matrices P¿ of order equal to the

order of A}. Each element of A corresponds to a different ordering

of the vertices of G. It is clear that for each such class of adjacency

matrices there corresponds a unique class of isomorphic graphs.

From this point on "graph" will mean a finite undirected graph

with no loops. Such a graph has an adjacency matrix (ay) whose

entries are non-negative integers such that a</=*a/< and ati = 0. We

also use the following notation: o(G) is the number of vertices of G

and is called the order of G, pi-^>pk is a chain in G from vertex pi to

vertex pk, and n(pi—>pk) is the number of lines (not necessarily dis-

tinct) in pi-^pk.

If A and B are two adjacency matrices and A o B is some matrix

product which is also an adjacency matrix then this matrix operation
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