A PROPERTY OF HOMOGENEOUS PROCESSES

JOHN W. WOLL, JR.1

1. Statement of results. In the following G is a locally compact Hausdorff group, K a compact subgroup, X = G/K the homogeneous space of left cosets, and C(X) the Banach space of continuous complex valued functions on X which are constant at infinity. $(P_t)_{t\geq 0}$ denotes a homogeneous process on X. That is, $P_t\colon C(X)\to C(X)$ is a strongly continuous one parameter semi-group of positive, constant-preserving linear transformations of C(X) which commute with left translation by elements of G. Stated in other words, $(P_t)_{t\geq 0}$ is a strongly continuous one parameter semi-group on C(X); $f\geq 0$ implies $P_tf\geq 0$; $P_t1=1$ and $L_0P_t=P_tL_0$ where $L_0f\cdot (x)=f(g^{-1}[x])$, $f\in C(X)$, $g\in G$, $x\in X$.

 P_t is represented by a kernel $P_t(x, A)$,

$$P_t f \cdot (x) = \int P_t(x, dz) f(z),$$

which is the transition probability of a stationary Markov process on X. For the kernel, homogeneity means $P_t(x, A) = P_t(g[x], g[A])$ when $x \in X$, $g \in G$ and A is a Borel subset of X. It is shown below that

THEOREM. Every homogeneous process possesses Property II.

PROPERTY II. For each $z \in X$ there is a regular Borel measure Q_z on $X - \{z\}$ such that

$$(1.1) t^{-1}P_tf\cdot(z)\to Q_t(f) as t\to 0,$$

for each $f \in C(X)$ which vanishes on a neighborhood of z. Q_z is not necessarily bounded but it is bounded on the complement of any neighborhood of z.

The stochastic and analytic implications of Property II are discussed in [1]. Roughly speaking, Q_x describes very precisely the nature of the discontinuities in the paths of any process with transition probabilities $P_t(x, A)$, while from the analytic point of view Q_x is related to the form of the infinitesimal generator of P_t , and Property II implies, for example, that the domain of this infinitesimal generator admits very satisfying smoothing operations.

2. Reduction and reformulation. By way of preliminary computations, let H be a compact subgroup of G and dh the normalized Haar

Received by the editors December 24, 1960.

¹ Research supported in part by the National Science Foundation.

measure of H. Associated with H there are two projection operators on C(G). Namely, $f \rightarrow R_H f$ and $f \rightarrow L_H f$. These are defined by

$$R_H f \cdot (g) = \int R_h f \cdot (g) dh, \qquad R_h f \cdot (g) = f(gh).$$
 $L_H f \cdot (g) = \int L_h f \cdot (g) dh, \qquad L_h f \cdot (g) = f(h^{-1}g).$

When H is an invariant subgroup the automorphism $h \rightarrow ghg^{-1}$, $g \in G$, preserves the normalized Haar measure, so that $\int f(gh)dh = \int f(hg)dh$ and $L_H = R_H$. Similar computations show that when H is invariant $R_{HK} = L_H R_K$. A function $f \in C(G)$ is constant on the left cosets of G modulo K if and only if $R_K f = f$. Thus the two spaces $R_K C(G)$ and C(X) are isomorphic, and using this isomorphism there is a one-to-one correspondence between homogeneous processes on X and positive, constant-preserving semi-groups $(P_t)_{t\geq 0}$ on C(G) which satisfy $L_0 P_t = P_t L_0$, $g \in G$; $R_K P_t = P_t R_K = P_t$; and which are strongly continuous on C(G) when t>0 and on the subspace $R_K C(G)$ at t=0. We call the latter a K-homogeneous process on G.

Because of the homogeneity it suffices to prove (1.1) for a fixed $z \in X$, say for the coset K of G/K. Furthermore, it suffices to prove the limit (1.1) exists and is finite. The positivity of P_t can then be used to show this limit has the form $Q_z(f)$ described in the statement of Property II. With these modifications the theorem can be restated.

RESTATEMENT OF THE THEOREM. If P_t is a K-homogeneous process on G and $f \in R_K C(G)$ vanishes on a neighborhood of K, then

$$(2.1) t^{-1}P_tf\cdot(e)\to a \text{ finite limit} as t\to 0.$$

One further reduction is necessary before proceeding. This is to notice that it suffices to prove the restatement of the theorem when G is σ -compact (a countable union of compact sets). To see this let A_t be a σ -compact set in G on which the measure $P_t(e, \cdot)$ is concentrated, and let G' be the subgroup of G generated by some compact neighborhood D of K and the A_t , t-rational. G' is closed and σ -compact and contains the support of every $P_t(e, \cdot)$, $t \ge 0$, because $P_t f \cdot (e)$ is continuous in t > 0. By homogeneity the support of the functional $f \rightarrow P_t f \cdot (g)$, $g \in G'$, is also contained in G' and, in fact, $P_t(g, A)$, $g \in G'$, A Borel in G', defines a K-homogeneous process on G' with a unique extension to G. Clearly the limit (2.1) is unaffected by the values of f outside G' and one may as well assume G is σ -compact.

3. Proof of the theorem. This theorem has already been proved when X is separable in $[1, \S 3]$; so it is sufficient here to reduce the proof to the separable case. The key element in this proof is the following lemma which was suggested to the author by an argument in [2, p. 58].

LEMMA. Let G be a locally compact, Hausdorff, σ -compact topological group and let $f \in C(G)$. Then there is a compact invariant subgroup N of G such that $L_N f = f$ and G/N is separable.

To prove (2.1) from the lemma, simply note that $P'_{\iota} = P_{\iota}L_N = L_N P_{\iota}$ defines an NK-homogeneous process on G and that $f = L_N f = L_N R_K f = R_{NK} f$ vanishes on a neighborhood of NK. Since G/NK is separable, the separable version of (2.1) as proved in [1] implies that

$$t^{-1}P_tL_Nf\cdot(e)=t^{-1}P_tf\cdot(e)\to a \text{ limit}$$
 as $t\to 0$.

- 4. **Proof of the lemma.** f is constant at infinity and hence uniformly continuous on G. Let W_n be a compact neighborhood of the identity e such that for every $g \in G$, |f(gk)-f(g)| < 1/n when $k \in W_n$. We shall prove there is a compact invariant subgroup $N \subset \bigcap_n W_n$ such that G/N is separable. Clearly for any such N, $L_N f = f$. To show the existence of N let C_n be an increasing sequence of compact sets which cover G and choose V_n inductively so that
 - (1) V_n is a compact symmetric neighborhood of e.
 - $(2) V_n^2 \subset V_{n-1} \cap W_n.$
 - (3) $g^{-1}V_ng \subset V_{n-1}$ for every $g \in C_n$.

 $N = \bigcap_n V_n$ is a compact invariant subgroup of G. If T is the canonical projection $G \rightarrow G/N$, the sets $T(V_n)$ form a basis for the neighborhoods at the identity in G/N because for each open $U \supset N$, $V_n N - U$ is a decreasing sequence of compact sets with empty intersection and consequently $V_n N \subset U$ for some n. Since G/N is a σ -compact uniform space with a countable basis for its uniformity it follows that G/N is separable. Alternatively, G/N is a σ -compact metrizable space and hence separable.

REFERENCES

- 1. J. Woll, Homogeneous stochastic processes, Pacific J. Math. vol. 9 (1959) pp. 293-325.
- 2. D. Montgomery and L. Zippin, Topological transformation groups, New York, Interscience Publishers, 1955.

University of California, Berkeley