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Introduction. Suppose C(x, t), the concentration of a substance

diffusing in a slab of homogeneous material of thickness a, is deter-

mined by the system

dC d2C
-= K-, 0 < x < a;
dt dx2

C=C0atx = 0; C=0 at x = a for ¿>0; C=0aU = 0.

The quantity of matter

Jo  L     dx _U
Qit)=        \K—\    dt

J o L     dx Ax~a

which has passed through the medium in time t approaches an

asymptote of slope CoK/a as t tends to infinity, intercepting the

¿-axis at a point t'=a/6K. This intercept has been used by Daynes

[l] and Barrer [2, p. 19] as the basis of a method for obtaining the

diffusion constant K. In this note we show how to calculate the slope

and intercept of the asymptote in the more general case where

(1) Qit) =   f  I  f f Kiu) grad u-ds\dt

is the quantity of diffusing substance which has passed through the

part So of the boundary 37? of a region 72 in time / and u is determined

by the system

r n      du      dw
(2) div[7i:(w) grad«]-= /(« ,w)

dt        dt

inRíort>0;u = u0lw = WoinR, the closure of 7?, at t = 0 ; u = C(x, y, z, t)

on dR for t>0. Such systems govern the diffusion of a substance i7of

concentration w(x, y, z, t) which diffuses through a medium in accord

with Fick's first law and simultaneously interacts with an immobile

phase W. If w(x, y, z, t) is the local concentration of IF, the principle

of conservation of matter requires that u and w satisfy the differential

equation
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du       dw
(3) —-\-= div[K(u) grad u]

dt        dt

throughout the region 7? defined by the medium. The second equation

dw
(4) —- = f(u, w)

at

describes the local law governing the rate of interchange of matter

between the two phases U and W.

Calculation of the asymptote. Let D denote the open region

{(x, y, z, t): (x, y, z)ER, t>0] and D its closure. Suppose u and w

are continuous in D, while in D, dw/dt is continuous, the second order

space derivatives and the ¿-derivative of u are also continuous and

these derivatives satisfy the pair of equations (3) and (4). The func-

tion K(u) is assumed to be positive and have a continuous derivative

for all admissible values of u. In addition, suppose ux, w„ are defined

and continuous in R with continuous derivatives satisfying the sys-

tem

(5) div [/£(««,) grad u«,] = 0 = /(«„, wx)

in 7?, while u and w and their derivatives approach the corresponding

values of ux, wx and their respective derivatives at each point of R.

The flux of U over a part S0 of the boundary 57? is

(6) F(t) = - j  J   [K(u) grad«]-ds
J J So

and as t tends to infinity this approaches the constant value

(7) F(*)= -   f ( [K(u„) grad ux]-ds.
J J s„

The amount of phase U which has passed through S0 in time t is

(8) Q(t) =   f F(r)dT = F(tt)t-  f  [F(oo) - F(T)]dr.
" o J o

It will be shown that f¿[F(x>) — F(r)]dr tends to a constant A as ¿

tends to infinity.

Let us define <p(x, y, z, t) as fu[x;^)K(d)dd and \y(x, y, z, t) as

fkp(x, y, z, r)dr in D, so that
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V2uV = —       div{7f(«) grad u — i(»J grad un}dr
Jo

C ' Vdu      dw "1

= «o + wo — u(x, y, z, t) — wix, y, z, t)

in 7? for each value of t, while on the boundary dR,

/* t     y» u{X,v,z,oo

Jo    Ju(l,y,i,r)

K{e)dedr

(10)
r   /•«(*.».«.«) -|<     /•* ¿>M

-   t K(B)d6     +  I   t7C(m) — dr.
L    Ju(X,y.i,r) Jo        J 0 dr

In the limit as / tends to infinity, yp tends to a function \pK defined by

the system

VVoo = «o + wo — m„ — w„ in 7?,

o
f* =        tTÍ(m) — dr on dP

•7 o dr

provided this last integral exists and is continuous at each point of

dR, and the boundary is sufficiently smooth.

Now

f [F(cc)- F(T)]dr
Jo

= —   I   I    -j        [K(ux) grad ux — K(u) grad u]dr> -ds

= —   I I    grad \¡/ • ds

and as / tends to infinity, the right hand side approaches the value

- If s,, grad \pa-ds.
Summarizing these results, we see that

Q(t)~F(«>)i - A

where
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F(co) = -  | |    [K(uM) grad ux]-ds

'So

and

^ = -JXgradtn-ds.

The function mm is determined by the system

div[K(«„) grad «„] = 0 = /(««,, w„) in 7?,

where on dR,

ii«, = lim u(x, y, z, t) = lim C(x, y, z, /),

while the function ypK satisfies

VVM = uo + wo — ux — wx in 7?,

and the boundary conditions

*„ =   I K(6)d6dT =   I    t7¡T(m) — dY
«'o   •7U(i,v,í.t) «/o ¿V

onôT?.

In the case where So coincides with the whole surface 57?, an ap-

plication of the divergence theorem shows that

- J7J> Uo + wx — wo]dV,

as one would expect from the conservation principle. If ux = wx = 0,

i/'« is determined by the initial values of u and w and the boundary

values of u, so that the total quantity of diffusing matter which flows

over any part S0 of the boundary 37? is independent of the function

K(u). In particular, if a hollow cylinder is saturated under a bound-

ary concentration C0 and then removed from the saturating environ-

ment, the proportion of its contents which flow through the internal

cylindrical boundary is independent of K(u) and the function/(w, w)

describing the interaction between the phases « and w.

As an example of this method, suppose

d r du~\      du
—   K(u) —   = —, 0<x<a,
dx L dxj      dl

and u satisfies the boundary conditions u = 0 at f = 0 on (0, a), while
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u=Co at x = a and u = 0 at x = 0 for all i>0. The time integral of

the flux through unit area of the face at x = 0 is asymptotic to

F(<x>)t—A. Since

d r dua~\
- Uw- =o,
dx\_ dxj

we see that

I     K(0)dO = —x   where   b =   j     K(6)dO,
Jo a Jo

and hence

r toxl b        Cc" K(6)
P(oe) =   *(«.) —    -—-I     — <**•

L ox Jo       a      ^o        ß

Again,

—— = - M«, m (0, a),
dx2

while ^00 = 0 at x = 0 and x = a and therefore

J.i x     /.o
(x — z)uK(z)dz + — I    (a — z)um(z)dz,

o a J o

^ =    -     = — I    (a — 2)mw(2)íÍ3 = — I     (a — 2)2dMw
L dx Jo       a Jo 2a Jo

a   rc"V        /  Pu" /   C0" \T

-if. L1 -CX ""/J. ««*)]*-
Evidently C0a/2 > .4 > 0.

Let us finally note that the method depends on the fact that u

satisfies a conservation law of the form \/2<p = dq/dt where <p is a

known function of u, while q is given initially and at <= » and m has

known values on dR.
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