UNIT WITT VECTORS

MARVIN J. GREENBERG

- 1. The multiplicative group W_n^* of units, in the ring W_n of Witt vectors [2] of length n with coefficients in an algebraically closed field k of characteristic p>0, is an algebraic group variety over k. It decomposes into the direct product of group varieties $W_n^*=W_1^*$ $\times U_{n-1}$, where W_1^* is isomorphic to the one-dimensional multiplicative group G_m , and U_{n-1} is the algebraic subgroup defined by $x_0=1$; the decomposition is given by $(x_0, (1, x_1, \dots, x_{n-1}))$ $\rightarrow (x_0, x_0^p x_1, \dots, x_0^{p^{n-1}} x_{n-1})$. Dieudonné has remarked [1] that U_{n-1} is isomorphic as a formal Lie group to the additive group W_{n-1}^+ . We will show that these groups are isomorphic as algebraic groups only when $p \geq 3$, and we will determine the structure of U_{n-1} in characteristic 2.
- 2. For the analytic assertions in this section, we refer to Hasse [2, §17]. The Witt vectors of infinite length form a complete discrete valuation ring W_{∞} of characteristic 0, with residue field k, and maximal ideal generated by the prime p. Let

$$U^{(n)} = \{z \in W_{\infty}; z \equiv 1 \mod p^n\}$$

so that $U^{(1)}/U^{(n+1)} = U_n$. Let $U_n^{(i)}$ be the subgroup $U^{(i)}/U^{(n+1)}$ of U_n . The series

$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + \frac{(-1)^{n-1}x^n}{n} + \cdots$$

converges for all $(1+x) \in U^{(1)}$, and defines an analytic homomorphism from $U^{(n)}$ into the additive group $p^n W_{\infty}$ for all n > 0. Hence it induces by passage to the quotient a homomorphism

$$\lambda_n \colon U_n \to \rho W_{\infty}/\rho^{n+1} W_{\infty} \cong W_n^+$$

 λ_n is a homomorphism of algebraic groups, i.e., is an everywhere defined rational mapping, since only a finite number of terms in the log series contribute to λ_n . We also have the usual exponential series $\exp x$, which converges for all x of order >1/(p-1), and which defines an analytic homomorphism of p^nW_∞ into $U^{(n)}$ inverse to the logarithm, provided n>1/(p-1). Passage to the quotient yields a rational homomorphism

$$\epsilon_n^{(i)}: p^i W_{\infty}/p^{n+1} W_{\infty} \to U_n^{(i)}$$

inverse to $\lambda_n | U_n^{(i)}$ for all i > 1/(p-1). If $p \ge 3$, the inequality i > 1/(p-1) holds for all i > 0. Thus λ_n is an isomorphism of the algebraic group U_n with W_n^+ , whose inverse is $\epsilon_n^{(1)}$, if the characteristic of k is ≥ 3 .

3. Assume now p=2. Then the restriction of λ_n to the subgroup $U_n^{(2)}$ of U_n defined by $x_1=0$ is an isomorphism. We have the commutative diagram

$$1 \longrightarrow U_n^{(2)} \longrightarrow U_n \xrightarrow{\pi} G_a \longrightarrow 0$$

$$\cong \downarrow \qquad \lambda_n \downarrow \qquad \downarrow \psi$$

$$0 \longrightarrow W_{n-1}^+ \xrightarrow{V} W_n^+ \xrightarrow{R^{n-1}} G_a \longrightarrow 0$$

where $\pi(1, x_1, \dots, x_n) = x_1$, $G_a = W_1^+$ is the one-dimensional additive group, and V, R denote the shift and restriction homomorphisms of Witt vectors. It is clear without introducing λ_1 that U_1 is isomorphic to G_a . For $n \ge 2$, the class of U_n in $\operatorname{Ext}(G_a, W_{n-1}^+)$ will be completely determined by the rational endomorphism ψ of G_a (Serre [3, Chapter VII]). Putting $\lambda_n(1, x_1, \dots, x_n) = (0, y_1, \dots, y_n)$, we have $\psi(x_1) = y_1$. The first two terms in the log series are the only ones which can have order 1, and a computation of $x - x^2/2$ within W_∞ shows that $y_1 = x_1^2 + x_1$. λ_n is a separable isogeny of degree 2 whose kernel is $\{\pm 1\}$. The special property of the prime 2 here seems to be that the 2-adic logarithm of -1 is well-defined.

Note added in proof. J.-P. Serre has determined the structure of the pro-algebraic group $U^{(1)}$, using a different technique. Cf. his Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France 89 (1961), §1.8, p. 115.

BIBLIOGRAPHY

- 1. J. Dieudonné, Lie groups and Lie hyperalgebras over a field of characteristic p>0. II, Amer. J. Math. 77 (1955), 218-244.
 - 2. H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1949.
 - 3. J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959.

University of California, Berkeley