
ON SYMMETRIC PRODUCTS OF CURVES

ARTHUR MATTUCK

In view of the increasing fashionability of symmetric products

these days, we would like to note here that certain proofs in the

algebro-geometric literature about curves and their Jacobians gain

somewhat in clarity if they are placed on the symmetric product of

the curve with itself. At the same time one learns something about

the symmetric products. We have in mind Weil's proof (still the most

elementary one) of the Castelnuovo-Severi inequality lying at the

base of the Riemann hypothesis in function fields, Matsusaka's proof

of the intersection relations among the Wi on a Jacobian, and the

classical theory of Weierstrass points on a curve. In the first two cases,

the proofs given here are essentially the original ones, only cleaned

up a little (though we do get a slight sharpening of the inequality as

a by-product) ; in the third case, it is a question of giving the geo-

metric significance of some calculations whose meaning I could never

understand.

1. The Castelnuovo-Severi inequality. Let C be a complete non-

singular curve over an algebraically closed field k; we dismiss the

trivial and semi-trivial cases and assume henceforth that g Si 2, where

g is the genus of C. Let C[g] and C(g) be the g-fold direct and sym-

metric products of C with itself, respectively; these are both non-

singular varieties [6, p. 803] and we can think of their points as

representing respectively the ordered g-tuples of points of C, and the

unordered g-tuples (positive divisors of degree g on C). Some of the

important g — 1 dimensional subvarieties of C(g) are first of all the

"simple coincidence locus" Ai, consisting of all divisors 2pi+p2+ • • ■

+Pü-i containing a repeated point, secondly the variety A^[p], which

consists of all divisors containing a given pEC and which is evidently

isomorphic to C(g — 1), and finally the unique positive g — 1 cycle S

in the canonical system on C(g).

A few words about S to begin with. Let Xi, • • ■ , x„ be independent

generic points of C, and for a function /of k(C), denote by /(a) the

function f(xa) Ek(xa), and similarly for the differentials 0 of the field

k(Q. Then if {/,0}, t=l, • • • , g, /i=l, are a basis for the regular

differentials on C, the g simple differentials 22<*fi")(f>M are a basis

for the regular 1-forms on C(g) and their exterior product

$ = det | /,■   I 0     • • • 0     = det | /,•  0
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is a regular g-form on C(g), and in fact up to a constant factor, the

unique one. Its zero-locus is thus a positive cycle S. Actually, S is

irreducible [4], though for our later purposes it will be enough to

know that all its components occur with multiplicity one, as we shall

show. 5 consists exactly of the special divisors of degree g on C—

those g-tuples pi+ • ■ • +$<, belonging to a linear system of positive

dimension, or equivalently for which there exists a regular differential

0 on C such that (\¡/) >pi+ ■ • • +p0. For $ is zero at a point of C(g)

if and only if the rows of the determinant become linearly dependent,

and this happens exactly when such a \p exists, [ö].

From the definition of 5, we have almost immediately

ia-i

(1) 2S + Ai ~ 2 2 X[p{]
i

where ~ denotes linear equivalence on C(g) and pi + • • • +£»=(0)

is a canonical divisor on C. Namely, (det |/4 |)2 is a function on

C(g) whose zeros are the left side and poles the right side: this is clear

set-theoretically, and the multiplicities are easily calculated—that

of S by definition of S, that of X [p,] trivially because the determinant

is linear in each entry, and for the multiplicity of Ai one can use the

local uniformizing parameter Y[a*ß(tM— î(9))> t being any function

on C which is nonconstant.

Now let ¡E be a nontrivial correspondence class on CXC. By an

elementary argument [4, p. 44] it contains an irreducible correspond-

ence Z over K~Z)k of degrees g and e, and such that Z(p) =qi+ • • ■

+ q9 is a generic point of C(g) over k, p being generic over K. For if

Z' is some correspondence in the class ï whose first degree d' is large

and one picks fixed generic points ti, • • • , Xd'-g of C, then Z'(p)

— (ti+ • • • +Xd'-g) is a divisor of degree g and is therefore by the

Riemann-Roch theorem equivalent to a unique positive divisor of

degree g, which it is easy to see must contain only points which are

independent generic over k. Set therefore Z = Z'— }^CXr,. Thus

p—>Z(p) gives a rational map of C—>C(g) whose image is a curve T.

Since Z(p) is nonspecial, 5- Tis defined and is non-negative, and since

clearly [T-X [p¿]] =e, we get for g^2 and Z nontrivial, by applying

(1),

(2) j[Ai-T]ú(2g-2)e.

This is a little sharper than Castelnuovo's inequality, where the right

side is (2g — l)e for all g and X; here Ai- T is what he calls the number

of "coincidences" for the correspondence Z.
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To get the Severi form of the inequality, there is little to add to

Weil's proof, but we sketch the outline for convenience. Let D be the

diagonal of CXC and let/: C[g\-*C(g) and pri2: C[g]-^CXC be the

usual maps. Consider the cycle (l/(g — 2) !)(pr^T?) -(/_1P) on C[g];

applying first/and then pri2 to it and using the projection formula

in each case gives then [Ar7]= [D-(Zo 'Z — eD)]. Namely, Z o *Z

is the locus over K of 22q,Xqy, while pr12(/_ir) is (g — 2)! times the

locus over K of 12i*j Q<Xq> [4, p. 48]; their difference is the AMocus

of 12<\iX0i, but as p varies on C, this moving zero-cycle evidently

covers the diagonal D just e times. Thus since [D-D] = 2 — 2g, the

inequality (2) above becomes

1   r
(3) d(Z)d(Z')-[Zo'Z-D]^ e.

Since the left side of (3) is an invariant of the correspondence class,

(3) is valid for an arbitrary nontrivial Z, if g^2, e being then d'(Zo)

where Z0 is an irreducible correspondence of degree g in the class of Z.

For example, if g ^2, then e= 1 only if Z0 defines a rational insepara-

ble map C^>C, in which case Z0 o 'Zo = gD. Thus in all cases, if g ̂ 2,

Z nontrivial, then (3) holds with e = 2.

2. Intersection relations on Jacobians. Let J be the Jacobian,

x: C(g)—*J the map with reference point pEC. We have then the

usual subvarieties (indexed by codimension) © = Wi, ■ ■ ■ , W„, and

we want to show that, modulo numerical equivalence,

(4) Wr'Wimir+i)Wr+i.

Now on C(g) we have the subvarieties : Xr = {all divisors containing

rp}, and Ar+i= {all divisors of the form rp + 2q+ • • • }. Ar+i is so to

speak the simple coincidence locus on Xr. We have then by definition

ir(Xr) = Wr, and the formulas (cf. [4])

(5) r-HWù =S + Xi,

(6) Xr-Xi~ Xr+Í,

(7) AVAi= 2rXr+i + Ar+U

Here (6) is meant in the sense of the rational equivalence ring on

C(g), since of course X,-Xi is not defined; in (7) numerical equiva-

lence is meant. The second and third of these are essentially trivial:

it is just the old game of turning obvious intersection multiplicities

on C[g] into less obvious ones on C(g) by applying the projection

formula to the map/.

To prove (5), we note first that it is true set-theoretically, since

ir(12pi)EWi if and only if XX~°> where 6 = p-f-qi+ • • • +q„_i is a
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divisor lying in Xi. That is, 2p»~ p~£<1»>0, which happens if and

only if pi = p for some * (so that ^ZpiEXi), or if 2p» 1S special (so

that ^piG-S). Thus in any case, ir~l(W{) =S'+aXi, where a^l and

S' is a cycle with the same support as S. By applying r and noticing

that ir(S') =0, we get a = 1. Now letting X1 be the curve on C(g) con-

sisting of all divisors of the form q+qi+ • • • +qe-i where the q,- are

fixed points, then for general choice of the q¿, we get

r-\Wi)-Xl = S'-Xl + Xi-XK

Using [Wi-ir(Xl)]=g (cf. [2]) and (6) above, we get

[S'-Xi] = g-1

while from (1), (6), and (7), we have

[S-X1] = g - 1.

Now set-theoretically, | S| HZ1 contains in general g — 1 points, since

there are just g—1 ways of completing qi+ • • • +q„-i to be a special

divisor of degree g—just pick any one of the g — 1 additional points

which fill out the in general unique canonical divisor of degree 2g — 2

containing qi+ • ■ • +qe-i. And every component of S is intersected

properly by some suitable X\ It follows that all the components of 5

and S' must occur with multiplicity one, so that from \S\ = | S'\, we

deduce S = S', which proves (5).

We can now prove the relations (4). Using in turn the projection

formula, (1), (5), (6), and (7), we get

Wr-Wi = ir(Xr-(S + Xi)) s (2g - 1 - r)Wr+i - -ir(Ar+i).

And just as in Matsusaka, we get to complete the proof (* = Pontrjagin

product)

,r(Ar+i) m Wr+i * (2«)(WVi) =; W^ * AW a-i = 4(g - r - l)Wr+i.

The only nontrivial part of these last steps, and the only place in this

proof where numerical equivalence enters essentially (all the rest

could be done with rational equivalence) is in the statement (25) (Wa-i)

= AiWa-i. We give Matsusaka's proof: put a = nd, W= Wa-i, and let

us show that a(W) =n2W. For any positive divisor X, we have (since

it is a question of zero-cycles), on the one hand a~l(a(W)-X)

=v(a)(a(W)-X) and on the other hand crx(a(W) -X) =a~1(a(W))

•a~1(X)=v(a)W-niX by the theorem of the square and since

a~1(a(W)) consists of the v(a) translates of W by the elements of the

kernel of a.

3. Weierstrass points. These are by definition the points pGCfor
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which gp is a special divisor, and are thus in one-one correspondence

with the points of Si^A, where A is the curve on C(g) which represents

all divisors of form gp. The classical theorem is that if N= the number

of Weierstrass points, then in characteristic zero,

2(g + 1) = N è g3 - g

with the lower equality holding if and only if C is hyperelliptic. This

is proved by defining a weight w(p) for pEC, which is a non-negative

integer, positive exactly when p is a Weierstrass point, and showing

that w(p) úg(g —1)/2, and that 12w(p)=g3—g. We wish to give

here the geometric meaning of this proof.

Assume g>0, and for pEC, let {uí} be the sequence of "missing

ordinals" associated with p: the sequence of integers such that there

is no function/G¿(G) with a single pole of order «,- at p. From the

Riemann-Roch theorem, this sequence contains g numbers, of which

the first is 1, and the last ^2g—1, and it is written (cf. [l] for this

entire section)

o-l

1, «i + 1, ai + 0:2 + 1, • • • ,  12 «« + L
i

Definition. The weight w(p) = (g — l)(ai —l) + (g — 2) (a2— 1)+ • ■ •

+ (ae-i—1). Clearly w(p) =0 if and only if pis not a Weierstrass point.

Note also that the complementary sequence to {w<} is the set of

occurring ordinals; these clearly form an additive semigroup. Now if

2 is an occurring ordinal, C is clearly hyperelliptic, and in this case

(characteristic zero), a direct calculation shows that all Weierstrass

points must have the sequence 1, 3, 5, • • • , 2g— 1 and thus weight

g(g—1)/2. Otherwise,

Proposition 1. If C is not hyperelliptic, w(p) <g(g—\)/2.

Proof. The sequence for any Weierstrass point must then start

1, 2, • • • and end with a number ^2g —1, contain g members, and

have its complementary sequence a semigroup. The proposition fol-

lows formally from these facts by induction on g. For g = 3, there are

only two possible sequences and they both have the right weight. As-

suming the truth for g, and considering it for g + 1, we thus have a

sequence 1, 2, • ■ • , l^ai + i. It cannot end with the numbers 2g,

2g + l, for then the complementary sequence would not have the

semigroup property: one cannot choose g numbers from 3, • • • ,2g— 1

such that no two add up to either 2g or 2g +1. Therefore the sequence

ends with at most one of these two numbers. Drop the last term of

the sequence; one is left then with a g-membered sequence satisfying

the induction hypothesis, of weight <g(g —1)/2, and it is immediate
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that then the weight of the original sequence cannot be more than

g bigger, is therefore <g(g + l)/2.

Proposition 2. In characteristic zero, w(p) is the multiplicity of gp

in A • 5.

Proof. Let tEk(C) be a local uniformizing parameter at p, and

put ta = t(xa). By §1, (det \fi(t„)\)2/H(ta-tß) is a local function

for the cycle 25 in the neighborhood of gp on C(g). Its restriction to

A is by an elementary calculation just W(fi(t), • ■ • , fg(t))2, the

square of the Wronskian, which doesn't vanish identically since the

/,(/) are independent on C (characteristic zero!). The multiplicity we

seek is therefore ordp W, and this is computed as follows. Recall that

the fi are any basis for the space of functions f on C such that (/)

^ — (0). By Riemann-Roch, if ut is a missing ordinal, then there is a

function fi in the space with a zero of order u( — 1 at p, so that

fi = tUi~1+ • • • . These/, are g in number, clearly are independent,

are therefore a basis for the vector space, and using them to compute

ordp W, one gets (since (w¿— l)=ai+ • • • +a»-i)

o g(g — 1)

ordp W = 2 («i - U-" w(p)-
i 2

It follows that 2w(p) = [A-S] in characteristic zero. To complete

now, we use the first two sections to prove

Proposition 3. In any characteristic, [A-S] =g3—g, if defined.

Proof. From the end of §2, we have r(A) = (gb)W a-i = g2W0^.i.

Also, we have [A-ATi] =g, by a proof like that of (6) and (7). By (5),

we have A-r~l(W) =A-(S+Xi), and applying the projection formula

to this gives

g2[W^vW] = [A-S} + [A-X,],

from which the result follows, using (4).

Bibliography

1. Hensel-Landsberg, Theorie der algebraischen Funktionen einer Variabein . . . ,

Leipzig, Teubner, 1902.

2. S. Lang, Abelian varieties, New York, Interscience, 1959.

3. T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sei.

Univ. Kyoto. Ser. A. Math. vol. 23 (1959) pp. 1-19.
4. A. Mattuck, Symmetric products and Jacobians, Amer. J. Math. vol. 83 (1961)

pp. 189-206.
5. A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Paris, Her-

mann, 1948.

6. A. Andreotti, On a theorem of Torelli, Amer. J. Math. vol. 80 (1958) pp. 801-828.

Massachusetts Institute of Technology


