
ON DIRECT PRODUCTS OF INFINITE CYCLIC GROUPS

R. J. NUNKE1

1. Introduction. A direct product of infinite cyclic groups is a

group Z1 consisting of all functions x: 7—>Z (where Z is the additive

group of integers) with addition defined termwise. Suppose that Z is

given the discrete topology and Zl the corresponding Cartesian prod-

uct topology. It is natural to ask about the structure of the closed

subgroups of Zl. We shall show that if 7 is countable the closed sub-

groups of Z1 are products, i.e., are isomorphic to groups of the form

ZJ. If I is uncountable there are closed subgroups which are not

products. We shall show however that every direct summand of a

product is a product and give necessary and sufficient conditions for

a subproduct of a product to be a direct summand.

2. Topology. If {an} is a sequence of elements of Z1, then a"—*a in

the product topology if, for each index i in I, a" = a¡ for almost all n.

In particular a"—>0 if, for each i, a" = 0 for almost all n. Let N be the

set of natural numbers and for i in N let ô* in ZN be such that 5j=0

for ijéj and = 1 for i=j. We have

Lemma 1. If {an} is a sequence of elements of Z1, then a"—>0 if and

only if there is a homomorphism h: ZN-^>ZI such that *(5") =a" for all n

in N. This homomorphism, if it exists, is unique.

Proof. If a"—>0 we define * by A(x)j= ^„ xna" for each i in I. By

the definition of convergence the sum used to define h is finite on each

coordinate. Moreover Ä(Sn)=a" so that the required * exists.

Conversely suppose such an * exists. Let 7r¿: Z1^*Z be the ¿th

coordinate projection. Then irih:ZN-j>Z and, according to Specker

[4], 7r,Ä(5") = 0 for almost all n. Since 7Ti*(Sn) =a" we have an—»0.

Finally the uniqueness of * follows from the result of Specker [4],

that if/: ZN-*Z and/(5n) =0 for all n, then/=0.

If X and F are topological spaces, a map/: X—>Y is sequentially

continuous if fix") —>/(x) whenever x"—»x. As a corollary to Lemma 1

we have

Lemma 2. If I and J are arbitrary nonempty sets, then every homo-

morphism f: Z'-*ZJ is sequentially continuous.
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Proof. Let xn be a sequence in Z1 and xn—»x. Then xn — x—*0. By

Lemma 1 we have a homomorphism h : ZN-^>ZI such that h(dn) = x" — x.

If /: Z'—>ZJ is a homomorphism we have fh(5") =f(x") — f(x)—>0 so
that/(xn)—>/(x) as required.

It is natural to ask at this point whether sequential continuity can

be replaced by continuity in Lemma 2. There are two approaches to

this question. In both we note that we can take ZJ = Z. The first

approach is to apply a theorem of Mazur [3 ] to strengthen sequential

continuity to continuity. According to Mazur there is a cardinal a

such that every sequentially continuous function/: ZI^>Z is continu-

ous provided the cardinal | /| of / is less then a.

The second approach notes first that every homomorphism of

Z1—^>Z is continuous if and only if

(1) Hom(Z/, Z) is a free abelian group with a basis consisting of

the coordinate projections.

This equivalence is easily proven by showing that (1) is equivalent

to the conjunction of

(2) if/: Z1^>Z is a homomorphism, then/^ô*) = 0 for all but a finite
number of indices i; and

(3) if/: Z1—>Z is a homomorphism such that h(¥) = 0 for all indices

i, then/=0.

The statement (2) is equivalent to Lemma 2. The statement (3)

holds whenever | /| is less than the first cardinal ß with a nonzero

countably additive two-valued measure which is zero on finite sets.

This result was announced by Ehrenfeucht and Los in [l ] ; a proof is

given in Fuchs [2, pp. 169-171].

An examination of Mazur's paper shows that a^ß; whether equal-

ity holds I do not know. In any event the second approach yields a

simpler proof.

3. Closed subgroups of products.

Theorem 3. Every closed subgroup of ZN is a product.

Proof. Let P = ZN and, for each « in N, let P„ be the subgroup of

those x in P such that x¿ = 0 for i<n. Then Pi, P2, ■ ■ • is a base at

0 for the topology on P. If G is a subgroup of P, then x is in G if and

only if, for each w in N, there is an element un in G such that x¿ = w"

for all i<n.

Let A be any subgroup of P and let dn be the g.c.d. of the integers

un where u ranges over the elements of AC\Pn. Since the g.c.d. of a

nonempty set of integers is a linear combination of a finite number of

them, there is an element an in A(~\P„ such that a„ = dn. If dH = 0 we

choose a" = 0. The elements a" have the following properties:
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(i) aî = 0 for i<n;

(ii) aî=0 if and only if an = 0;

(iii) a¡¡ divides u„ for ail u in 4nP„.

In view of (i) an—>0 so that, by Lemma 1, there is a homomorphism

*: P-^P such that *(5")= a". For x in P set xn=XiS1+ • • • +x„_i5n_1.

Then xn—>x so that A(x")—>*(x) by the sequential continuity of *.

Since *(x")=Xia1+ • • • +xn_ia"_1 is in 4 for all n, we have A(x) in

4. Thus *(P)Ç4.
To show the opposite inclusion let y be any element of 4. Then

there is a y1 in 4 such that yi = yi. According to (iii) (and Pi = P) we

have yi = X\al. Hence y — Xia1 is in 4P\P2 which is the closure of

AC\Pi. Then there is a y2 in iHPj such that (y — Xiö1)2 = y2- By (iii)

yl = x2a2 so that y —xio1—x2a2 is in 4r^P3. Continuing we get a se-

quence x = (xi, x2, • • • ) such that

y — xia1 — XiO? — ••• — xn-\a"~l E A C\ Pn

for each n in A. Therefore *(x") =XiaI + ■ • ■ +x„_ian_1—>y so that

*(*) =y by Lemma 2. Since y was arbitrary in 4 we have *(P) =4.

For tÇA let P(t)= {x|x„ = 0 for nEr). We define o={n\an = 0).

Then P = Pio)®PiN-a) and each of P(cr) and PiN-tr) is_a prod-

uct. We shall show that the kernel of * is PiN — cr). Then 4 is iso-

morphic to Piff) which proves the theorem. It is clear from the defini-

tion of * that hiPiN-ff)) =0. Suppose that x=¿0 is in P((r) and let *

be the first index such that xk = 0. We have k in A — cr so that a\^0.

Also A(x)A= X)» ̂ i with x. = 0 for i<k and a't = 0 for i>k (by (i)).

Hence hix)k=xka\?i0 because Xi^O and al^O. Therefore x^O in

Piff) implies hix) ^0. For an arbitrary x in P we have x = x" + (x — x")

with x" in PiN—ff) and x —x"in P(<r). If *(x) = 0 we have 0 = *(x —x")

so that x —x' = 0. Thus hix) =0 implies x = x" is in PiN — cr) showing

that PiN — ff) is the kernel of h.

A slight modification of this proof gives a little more. Let S be the

subgroup of P = ZN generated by the 5". Thus S is the free abelian

group on countably many generators. We have

Theorem 4. Every subgroup of infinite rank of P is isomorphic to a

subgroup of P containing S.

Proof. If the subgroup is 4 we proceed as above obtaining h and

ff. If N—ff is finite, then Pier) is finitely generated. Since * maps Piff)

isomorphically onto A, N — cr must be infinite if 4 has infinite rank.

For each * in N let kii) be the ¿th element in order of magnitude in

N-ff and define/: P-+P so that/(50 = 5««. Thus/(P) =P(<r) so that



i962] DIRECT PRODUCTS OF INFINITE CYCLIC GROUPS 69

hf maps P isomorphically onto A, and hf(5i)=akii). Then A is iso-

morphic to (hf)~l(A) which contains 5.

As noted in the introduction Theorem 3 does not generalize to

products with uncountably many factors. Since each endomorphism

of P is continuous every direct summand of P is closed and thus a

product. This result does generalize as we now show.

4. Direct summands of products. For an abelian group A, the

dual A * of A is defined by A * = Horn (A, Z). I f B is a subgroup of A,

the annihilator B' of B in A* is the group of all h in A* such that

h(B)=0. The exact sequence 0—*B-+A—*A/B—>0 has a dual exact

sequence 0->(A/B)*-^A*-^B*. The image of (A/B)* in A* is B'.

If A =B® C so that the first sequence above splits, then so does the

second and we have A* = B'(BC with B' isomorphic to C*.

Suppose that G = Z' is such that G* is a free abelian group with a

basis consisting of the coordinate projections rt: Z'-+Z. This will be

true if | /| is less than the first cardinal of nonzero measure. There is

a homomorphism <r: G—>G** defined by o(x)h = h(x) for x in G and

h in G*. Under the above hypotheses a is an isomorphism. If tr(x) =0

we have ití(x) = 0 for all i, hence x = 0. Thus a is a monomorphism.

If p is in G** let x in G be defined by x< = 7r,(x) =u(iri). Then a(x)r¡

= u(rt) for all i. Since the x¿ generate G* we get o-(x) =a. Thus a is

also an epimorphism. We shall identify G with G** by o\

We shall call an abelian group A an e. h. group if, for each aj^O

in A, there is an h in /I* with h(a)^0. The following properties of

e.h. groups are either well known or easy to prove.

(1) A is an e.h. group if and only if it can be embedded in some Z1.

(2) Every subgroup of an e.h. group is one.

(3) For each A, A* is an e.h. group.

(4) A countable e.h. group is free.

This last property follows from (1) and Theorem 47.1 of [2].

Suppose A is a subgroup of G = Zl. Then A" (the annihilator of

A ' in G) consists of all x in G such that h(x) = 0 for all hin G* such that

h(A) =0. We always have AQA". In view of the first paragraph of

this section A =A" if and only if G/A is an e.h. group.

After these preliminaries we can state

Theorem 5. Let I be a set with \ l\ <ß (see §2). Then

(a) If A is a direct summand of Z1, then A is a product.

(b) // AQZ1, Z1 /A is an e.h. group, and A* is free, then A is a
direct summand of Zl.

(c) // A QZ1, Z1 /A is an e.h. group, and either A is a product or I is

countable, then A is a direct summand of Z1.
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Proof. To prove (a) suppose that G = Z1=A@B. Then G*

= A'@B'. Since G* is free so are A' and B'. Dualizing again we get

G = A"@B". Since G/A is an e.h. group A" = A. Thus A is isomorphic

to B'*. Since B' is free A is therefore a product.

In all of this proof the hypothesis that G/A is an e.h. group is

used to show that A =A". We have an exact sequence

0->(G/A)*-*G*-*A*.

If A * is free then the image of G* in A * is free so that A' (the image

of (G/A)* in G*) is a direct summand of G*. Thus G* = A'(B C so that

G = A"®C. But A =A" so that A is a direct summand of G. This

proves part (b).

To prove (c) we must show that if either A is a product or / is

countable then the image of G* in A* is free. The rest of the proof

follows that of (b). Let us assume first that / is countable. Then G*

is the free abelian group on countably many generators, hence

countable. The image of G* in A* is then a countable e.h. group by

(3), hence free by (4). With the other hypothesis A ~ZJ and we want

|/| <ß. Now the rank r(G) of G is 2"! and r(A)=VJ\. Then |/|

<2m^2m. uiam has shown in [5] that |/| <ß implies 2M <ß so we

have | J| <ß as required.

Theorem 5 has two immediate corollaries.

Corollary 6. // | /| <ß and if h: ZI-j>Z3, then the kernel of h is a

direct summand of Z1 if and only if it is a product. The image of h will

then be a product also.

Corollary 7. // h is a homomorphism of ZN into an e.h. group then

both the kernel and the image of h are products and the kernel of h is a

direct summand of ZN.

In Corollary 7 the fact that N is countable is important. If / is

uncountable there may be subgroups A of Z1 such that Z1 /A is an e.h.

group without A being a product. We can however show that A must

be the dual of some group.

Theorem 8. (a) For any abelian group B, B* can be embedded in a

product Z1 so that ZI/B is an e.h. group.

(b) // | /| <ß and A is a subgroup of Z1 such that Z1 /A is an e.h.

group then A is isomorphic to the dual of a group B.

Proof. We clearly have B*QZB so that to prove (a) we need only

show that ZB/B* is an e.h. group. Suppose x is in ZB but not in B*.

Then there are elements b, ein B such that x(b+c)— x(b) — x(c)^0.
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If 0: ZB—*Z is defined by 0(y) =y(è+c) —yib) —y(c) for y in ZB, then

0(73*) =0 and 0(x) 5¿0. In view of the paragraph preceding Theorem 5

this shows that ZB/B* is an e.h. group.

Now let us assume the hypotheses of (b). Then 4" = 4. Then we

have setting G = Z1 an exact sequence

0 -» iG/A)* -> G* -> A*.

Let B be the image of G* in 4*. Dualizing again we have the exact

sequence

0 _» B* -* G -» (C7/4)**

where we have identified G** with G. Now the image of B* in G is

the annihilator of the image of iG/A)* in G*, i.e., 4" = 4. Therefore

4 is isomorphic to 73*.

We should note that 73* is a closed subgroup of ZB. If we take

P = ZN, then P* is the free group on countably many generators.

Thus P* is a closed subgroup of Zp such that Zp/P* is an e.h. group.

This example shows that the countability restrictions are needed in

Theorem 3 and in Corollary 7. The author wishes to thank H. H.

Corson for suggesting that Mazur's theorem might be used to prove

the theorem of Ehrenfeucht and Loa and for raising the question of

the closed subgroups of ZN.
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