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1. Introduction. Let G be a simply connected region in the plane

of the complex variable z. The set of functions analytic in G and either

identically constant or A-valent at most in G form a closed set 77.

That is to say, any limit in G (uniform on every closed set in G) of

functions of the family also belongs to 7/ [2, p. 8].

Let w=f(z) be analytic and uniformly limited and ¿-valent in G.

For every function h(z) uniformly limited and of class 77 we set

X = l.u.b.[| h(z) -f(z)\ , zinG].

Let L(h) denote the greatest lower bound of all numbers X. It follows

by the theory of normal families [4, §§10, 18] that there exists at

least one function in 77 for which \ = L(h). Such an extremal function

will be denoted by h*(z).
It will be understood throughout this paper that h<k. Then L(h)

must be positive. For if L(h) were zero, there would exist a sequence

hi(z), h2(z), • • • of functions in H whose corresponding X-sequence

Xi, X2, • • ■ would converge to zero with the result that the sequence

hi(z), h(z), • ■ • would converge in G (uniformly on every closed set

in G) to f(z). But this is impossible since the limit of such a sequence

is at most fe-valent in G.

Walsh has proved [l, p. 345] that if f(z) =zk, where k is a positive

integer and G is the region \z\ <1, then for every h<k the value of

L(h) is unity. He has also found extremal functions h*(z) for such an

f(z) and such a region G. Our object in the present paper is to add a

few results to those of Walsh. Our Theorem 1 is an appraisal on

L(h). In Theorem 2 the precise value of L(h) is found for a restricted

situation. Theorems 3 and 4 are initial results on the relation between

the extremal functions and the character of the Riemann configura-

tion 7? onto which G is mapped by w=f(z).

2. Radius of/-coverage. Let w=f(z) be analytic and uniformly

limited and ¿-valent in a simply connected region G. Let R denote

the Riemann configuration over the w-plane onto which G is mapped

by w=f(z). With every finite point w0 of the w-plane we associate a

non-negative real number Mj(w0) called the radius of j-coverage at

wo (more exactly, the radius of precise/-coverage) as follows:
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(a) if there exists a positive r such that for every point w in the

region \w — Wo\ <r there are precisely / points of 7? having affix w

(a branch point of 7? of order p—\ counting as p points of 7?), then

we define Mjiwo) to be the largest r for which there is such precise

/-coverage of the region \w — w0\ <r.

(b) if there exists no positive r such that for every w in the region

| if—Wo| <r there are precisely/ points of 7? having affix w, we define

Mjiwo) to be zero.

Verification of the statement that there is a largest r in (a) can be

made in the manner indicated by Seidel and Walsh in their defini-

tion of radius of p-valence [3, p. 162], It is to be noted, however,

that while their radius of /»-valence is associated with each point of

the Riemann configuration R, our radius of /-coverage is associated

with each finite point of the w-plane.

Let M¡ denote the least upper bound for all Mjiw). For each /

there is at least one w at which Mjiw) = My. We denote by Mf the

greatest number to be found among those M i for which t'2:/.

3. Circular hull and circular kernels. Let A denote a limited plane

point set. The reader will readily verify the existence of a unique

minimal closed circular region Q containing A. Q is the circular hull

of A [5, p. 96].
If E is a limited plane point set having interior points, a maximal

open circular region K contained in £ is a circular kernel of E [5,

p. 96]. A set E may have more than one circular kernel. The region

bounded by two concentric circles has infinitely many circular ker-

nels.

4. Appraisal on L(A). Let w =/(z) be analytic and uniformly limited

and ¿-valent in a simply connected region G. Let R denote the Rie-

mann configuration over the w-plane onto which G is mapped by the

function w=fiz). Let 5 denote the projection of 72 on the w-plane.

That is to say, S shall denote the set of those points in the w-plane

over each of which lies at least one point of R. Denote by Sj the set

of points w having positive radius of /-coverage. Except for the trivial

case where /(z) is identically constant in G, the projection of 7? is a

region (not necessarily simply connected). The radius of circular ker-

nels of Sj is Mj. Finally, let r* denote the radius of the circular hull

of 5. Then we have

Theorem 1. Let w=/(z) be analytic and uniformly limited and k-

valent in a simply connected region G. Then the measure LQi) of best

approximation to /(z) in G by functions of the set H is bounded above
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by the radius r* of the circular hull of S and is bounded below by the

largest value to be found among the radii of circular kernels of the projec-

tions Sh+i, Sh+i, ■ ■ ■ , Sk. That is to say, M*+iúL(h) gr*.

Proof. Let w* denote the center of the circular hull of S. For the

function g(z) =w* of class 77 we have X = r*. Consequently L(h) does

not exceed r*.

It remains to prove that L(h) is not less than M*+i. Suppose

L(h) = M'<M*+i. In accordance with the definition of Mf+i there

exists a point w0 together with a positive integer j0 not less than h+1

such that Mj0(w0) = Mjf+i. Choose a positive number M" such that

M' <M" <Mh*+i. Consider in G the locus \f(z) -w0\ = M". The analy-

sis set forth by Seidel and Walsh [3, §14] applied to the present situa-

tion shows that the locus \f(z) — w0| =M" consists of a set of Jordan

curves J¿ (one or more in number not exceeding/0) such that the total

number of zeros (counted according to multiplicity) of f(z)—w0 en-

closed by them is jo. Let h*(z) be an extremal function of class 77,

that is, a function of the set H for which we have X = L(h) = M'. If we

write

Q(z) = h*(z) -/(,) = {**(*) - wo] - {/(z) - wo],

we have | Q(z) \ < M" everywhere in G. Then on each Jordan curve

Ji we have

|/(z)-k-o|   =M",        |Q(«) |   <M".

It follows by Rouché's Theorem [l, p. 6] that the function {f(z)—w0}

+ Q(z) has precisely as many zeros interior to each J¿ as has/(z) — Wo.

This means that h*(z) takes the value Wo at least h+1 times in G,

contrary to the hypothesis that h*(z) belongs to the set 7T. The con-

tradiction thus reached proves that L(h) can not be less than Mf+i-

When h = l, the class H becomes the family of functions analytic

and univalent in G; and Theorem 1 becomes a result in the problem of

approximating to a multivalent function by univalent functions.

Theorem 1 then has L(1)^M*. Moreover, when k^2, if we let q

denote the largest of the integers/ = 2, 3, • • • , k for which Mj=M*,

then the proof used in Theorem 1 shows that every function F(z)

analytic in G and such that

| F(z) - f(z) \   ÛH<M}, z in G,

is at least g-valent in G.

5. Extremal functions. Questions come to mind in connection with

Theorem 1. What is the precise value of L(h) ? When is there a unique
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extremal function? When does the set of extremal functions include

an identically constant function? How are the extremal functions

h*iz) related to 7? and 5 and the Sj? The following three theorems

provide a beginning toward the solutions of these problems. In Theo-

rem 2 the term fe-sheeted circle has the meaning given to it by Seidel

and Walsh [3, p. 159].

Theorem 2. If the Riemann configuration R onto which G is mapped

by w=fiz) is a k-sheeted circle having center (or centers) of affix w0,

then Lih)=r*; and one extremal function is A*(z)=w0.

Proof. The circular hull of 5 is identical with the closure of S; and

we have M* = M2*= • • • = Af** = r*. Consequently, L(h)=r*; and

one ft*(z) is the constant function A*(z)=w0.

Theorem 3. If there exists a function /(z) for which LQi) is less than

r*, then none of the extremal functions A*(z) is constant.

Proof. The existence of an identically constant function for which

X = L(A) <r* would require that 5 have a circular hull of radius less

than r*.

Theorem 4. 7//(z) is such that L(A)=r*, then the set of extremal

functions h*iz) includes just one identically constant function h*iz)

= %, where wh is the center of the circular hull of S. Conversely, if the

set of extremal functions h*iz) includes an identically constant function,

then Lih)=r* and the constant member of the set of extremal functions

is unique and is h*iz)=wH.

Proof. When LQî)=r*, then as in Theorem 2 the function fe(z)

= w# is an extremal function A*(z). If there were another identically

constant extremal h*iz)=WQ9£wn, then the projection 5 would have

to be contained in both the regions \w — wH\ <r* and | w — wQ\ <r*.

This would lead to the conclusion that 5 must have a circular hull of

radius less than r*, contrary to hypothesis.

Conversely, if the set of extremals Ä*(z) contains an identically

constant function A*(z)=-Wo, then L(A) can not be less than r* by

Theorem 3. Then by the first part of the present theorem it follows

that the function A*(z) =w0 is the unique constant member of the set

of extremals.
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