ON APPROXIMATION BY FUNCTIONS OF
LESSER VALENCE
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1. Introduction. Let G be a simply connected region in the plane
of the complex variable z. The set of functions analytic in G and either
identically constant or k-valent at most in G form a closed set H.
That is to say, any limit in G (uniform on every closed set in G) of
functions of the family also belongs to H [2, p. 8].

Let w=f(2) be analytic and uniformly limited and k-valent in G.
For every function k(z) uniformly limited and of class H we set

A = Lub.[| @) — ()|, zin G].

Let L(%) denote the greatest lower bound of all numbers . It follows
by the theory of normal families [4, §§10, 18] that there exists at
least one function in H for which A= L(k). Such an extremal function
will be denoted by A*(2).

It will be understood throughout this paper that k <k. Then L(k)
must be positive. For if L(k) were zero, there would exist a sequence

hi(2), ha(z), - - - of functions in H whose corresponding A-sequence
A1, Ag, - -+ - would converge to zero with the result that the sequence
hi(2), ho(2), - - - would converge in G (uniformly on every closed set

in G) to f(2). But this is impossible since the limit of such a sequence
is at most k-valent in G.

Walsh has proved [1, p. 345] that if f(z) =2*, where £ is a positive
integer and G is the region |z| <1, then for every k <k the value of
L(h) is unity. He has also found extremal functions A*(z) for such an
f(2) and such a region G. Our object in the present paper is to add a
few results to those of Walsh. Our Theorem 1 is an appraisal on
L(k). In Theorem 2 the precise value of L(%) is found for a restricted
situation. Theorems 3 and 4 are initial results on the relation between
the extremal functions and the character of the Riemann configura-
tion R onto which G is mapped by w=f(z).

2. Radius of j-coverage. Let w=f(z) be analytic and uniformly
limited and k-valent in a simply connected region G. Let R denote
the Riemann configuration over the w-plane onto which G is mapped
by w=f(z). With every finite point w, of the w-plane we associate a
non-negative real number M;(w,) called the radius of j-coverage at
wy (more exactly, the radius of precise j-coverage) as follows:
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(a) if there exists a positive r such that for every point w in the
region lw—wol <r there are precisely j points of R having affix w
(a branch point of R of order p —1 counting as p points of R), then
we define M;(w,) to be the largest r for which there is such precise
j-coverage of the region |w—'wol <r.

(b) if there exists no positive r such that for every w in the region
| w—wo| <7 there are precisely j points of R having affix w, we define
M ;(w,) to be zero.

Verification of the statement that there is a largest r in (a) can be
made in the manner indicated by Seidel and Walsh in their defini-
tion of radius of p-valence [3, p. 162]. It is to be noted, however,
that while their radius of p-valence is associated with each point of
the Riemann configuration R, our radius of j-coverage is associated
with each finite point of the w-plane.

Let M; denote the least upper bound for all M;(w). For each j
there is at least one w at which M;(w)=M;. We denote by M} the
greatest number to be found among those M; for which 12;.

3. Circular hull and circular kernels. Let 4 denote a limited plane
point set. The reader will readily verify the existence of a unique
minimal closed circular region Q containing 4. Q is the circular hull
of 4 [5, p. 96].

If E is a limited plane point set having interior points, a maximal
open circular region K contained in E is a circular kernel of E [5,
p. 96]. A set E may have more than one circular kernel. The region
bounded by two concentric circles has infinitely many circular ker-
nels.

4. Appraisal on L(%). Let w =f(z) be analytic and uniformly limited
and k-valent in a simply connected region G. Let R denote the Rie-
mann configuration over the w-plane onto which G is mapped by the
function w=f(z). Let S denote the projection of R on the w-plane.
That is to say, S shall denote the set of those points in the w-plane
over each of which lies at least one point of R. Denote by S; the set
of points w having positive radius of j-coverage. Except for the trivial
case where f(z) is identically constant in G, the projection of R is a
region (not necessarily simply connected). The radius of circular ker-
nels of S; is M;. Finally, let #* denote the radius of the circular hull
of S. Then we have

THEOREM 1. Let w=f(2) be analytic and uniformly limited and k-
valent in a simply connected region G. Then the measure L(h) of best
approximation to f(2) in G by functions of the set H is bounded above
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by the radius r* of the circular hull of S and is bounded below by the
largest value to be found among the radii of circular kernels of the projec-
tions Say1, Shie, + -+, Sk. That is to say, M. <L(h) Sr*.

PRrOOF. Let w* denote the center of the circular hull of S. For the
function g(z) =w* of class H we have A =r*. Consequently L(k) does
not exceed r*,

It remains to prove that L(k) is not less than M#%,. Suppose
L(h)=M' < M#,. In accordance with the definition of M¥, there
exists a point w, together with a positive integer jonot less than 241
such that M;,(wo) = M¥%:. Choose a positive number M”’ such that
M’ <M" < M. Consider in G the locus l f(2) —wol = M"'. The analy-
sis set forth by Seidel and Walsh [3, §14] applied to the present situa-
tion shows that the locus |f(z) —wol = M" consists of a set of Jordan
curves J; (one or more in number not exceeding j,) such that the total
number of zeros (counted according to multiplicity) of f(z) —w, en-
closed by them is jo. Let A*(z) be an extremal function of class H,
that is, a function of the set H for which we have A\=L(k) = M’. If we
write

Q@) = k*(s) — f(a) = {K*(@) — wo} — {f(2) — wd},

we have |Q(z)| < M" everywhere in G. Then on each Jordan curve
J; we have

| /) —w| = M", |0@| <M.

It follows by Rouché’s Theorem [1, p. 6] that the function {f(z) —wo}
~+Q(2) has precisely as many zeros interior to each J; as has f(z) — w.
This means that k*(z) takes the value w, at least k41 times in G,
contrary to the hypothesis that £*(z) belongs to the set H. The con-
tradiction thus reached proves that L(k) can not be less than M;¥,.

When k=1, the class H becomes the family of functions analytic
and univalent in G; and Theorem 1 becomes a result in the problem of
approximating to a multivalent function by univalent functions.
Theorem 1 then has L(1) = M. Moreover, when k22, if we let ¢
denote the largest of the integers j=2, 3, - - -, k for which M;= M,
then the proof used in Theorem 1 shows that every function F(z)
analytic in G and such that

| F(2) — f(z)| =u< M2 zin G,
is at least g-valent in G.

5. Extremal functions. Questions come to mind in connection with
Theorem 1. What is the precise value of L(k)? When is there a unique
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extremal function? When does the set of extremal functions include
an identically constant function? How are the extremal functions
h*(2) related to R and S and the S;? The following three theorems
provide a beginning toward the solutions of these problems. In Theo-
rem 2 the term k-sheeted circle has the meaning given to it by Seidel
and Walsh [3, p. 159].

THEOREM 2. If the Riemann configuration R onto which G is mapped
by w=f(2) is a k-sheeted circle having center (or centers) of afix wo,
then L(h) =r*; and one extremal function is h*(z) =w,.

Proor. The circular hull of S is identical with the closure of S; and
we have M¥=M}= - .- = M¥=r* Consequently, L(k)=r*; and
one h*(z) is the constant function A*(z) =w,.

THEOREM 3. If there exists a function f(2) for which L(h) is less than
r*, then none of the extremal functions h*(3) is constant.

Proor. The existence of an identically constant function for which
A=L(h) <r* would require that S have a circular hull of radius less
than r*,

THEOREM 4. If f(z) is such that L(k)=r*, then the set of extremal
functions h*(2) includes just ome idemtically constant function h*(z)
=wy, where wy 1s the center of the circular hull of S. Conversely, if the
set of extremal functions h*(z) includes an identically constant function,
then L(k) =r* and the constant member of the set of extremal functions
is unique and is h*(2) =wg.

Proor. When L(h)=r*, then as in Theorem 2 the function k(z)
=wpg is an extremal function A*(z). If there were another identically
constant extremal h*(z) =wgq> wy, then the projection S would have
to be contained in both the regions |w—wy| <r* and |w—1wq| <r*.
This would lead to the conclusion that S must have a circular hull of
radius less than 7*, contrary to hypothesis.

Conversely, if the set of extremals A*(z) contains an identically
constant function A*(z)=w,, then L(k) can not be less than r* by
Theorem 3. Then by the first part of the present theorem it follows
that the function k*(z) =w, is the unique constant member of the set
of extremals.
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