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The connection between Stokes's Integral Theorem and the

Frobenius-Cartan Integration Theorem concerning Pfaffian systems

has been noted a long time. In this note, we generalize Stokes's theo-

rem to implicit vector valued differential forms and derive from it a

general Frobenius theorem concerning mappings in Banach spaces.

The only difficulty in the proof arises in the need to show differenti-

ability with respect to a parameter of solutions of a certain differential

equation, but is is easily overcome. The generality of the theorem

seems to be necessary for applications to the new subjects of infinite

groups and of differential geometry in infinitely many dimensions.

E.g., it allows us to associate a local group to any infinite-dimen-

sional Lie algebra in a Banach space. For finite dimensional vector

spaces we obtain the classical theorem with nearly minimal differ-

entiability conditions [4]. Also for finite dimensional spaces, one

might derive from it parts of the Cartan-Kähler theory of integral

manifolds [3] for not completely integrable C°° systems.

1. All spaces in this note are real or complex Banach spaces. The

only topology to be considered is the norm topology and the topolo-

gies induced by it in the spaces of linear mappings. A mapping will

always be a bounded linear transformation of a Banach space into

another one, a function is a continuous map of spaces. Given two

spaces E, F with neighborhoods UEE, VEF, a differential form is a

function Aix, y): UX F—>£(£, F), taking values in the space of all

mappings of £ into F. We will denote by k = Aix, y)h, hEE, kEF the

image of h under the mapping, image of (x, y).

A function fix): U-+F is said to be (Fréchet) differentiable in

XoE U, if ¿/(xo)A = limx,o (l/X)(/(£o+XA) —fixo)) defines a mapping of

£ into F, and if furthermore there exists for every neighborhood F of

the zero of F an e(F) >0 such that

fixo + h) -fixo) - dfixo)k E ||*|| 7

for all * satisfying 0<||*|| <e(F), x0+hEU. Frobenius's problem

may then be stated as follows: Given a differential form Aix, y): UXV

—>£(£, F), find a function fix): U—>£ such that dfix)=Aix, fix)),
under the initial condition fix0) =Yo, XqE U, yoE V.

The Fréchet differential is a straightforward generalization of the
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directional derivative. For finite dimensional spaces, ^4(x, y) is a

vector valued differential form, or a system (w*) of Pfaffian forms.

Our problem then is to find a vector of functions /'(x'( • • • , x") such

that dfi—ui = 0 under given initial conditions and that the Jacobian

d(fi)/d(xi) be of maximum rank.

A differential form may itself be differentiable. Its differential may

be made explicit by the partial differentials dx and dy, operating on

E and F respectively :

[dA(x, y)h]k X / = [dxA(x, y)h]k + [dyA(x, y)h]l,  h,kEE,lEF.

If y is given by a Pfaffian equation dy = A(x, y), the substitution

l = dy(x)k = A(x,y)k induces from dA a function UXV—>£(E/\E, F),

the formal exterior differential (in E. Cartan's terminology: the ex-

terior differential mod dy = A(x, y) [2]):

8A(x, y)(h Ak)= [dxA(x, y)h]k + [dvA(x, y)h]A(x, y)k

— [dxA(x, y)k]h — [dl/A(x, y)k]A(x, y)h.

Frobenius's problem is then solved by the

Theorem. Assume dA(x, y) to be a bounded continuous function

UXV-^£(E, £(£, F)). The equation

(1) dy=A(x,y)

subject to the initial condition

(2) y(x0) = yo,       xoE U, y0 E V

has a unique continuously differentiable solution in some neighborhood

of Xo if and only if SA(x, y)=0 in UX V.

For functions /: E-+F we may write df= 5/, since E = ® lE = A1^.

Under our conditions a symmetry property holds for second differen-

tials which implies 55/= 0. This takes care of the necessity part of the

theorem, if it is assumed that a solution exists for arbitrary initial

data.

2. A curve is a function c: I—>E defined on the unit interval

7= [0, 1]. We will denote by ct its restriction to /,= [0, r], &$t£l.

All curves considered in the sequel are C1, hence rectifiable. Given a

differential form B(x): t/->£(£, F) and a curve c: I-+U, UEE,

the integral of B on c% is the integral on It

f B(x)dx =   f B(c(r))c'(T)dr.
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Here and in the future we will restrict ourselves to convex (e.g.,

spherical) neighborhoods. Any two points xo, xi in U may then be

joined by a C1 curve in U, e.g., the segment c(t) = (l—t)xo+txi. In

order to solve (1) we first join x0 to a nearby xi by a smooth curve c

and solve the integral equation

y(t) = yo + J  A(x, y(x))dx

(3)

= yo+ f A(c(T),y(T))c'(T)dT.

By our assumption the Fréchet differential dvA(x, y) is a bounded

linear operator, hence A (x, y) satisfies a Lipschitz condition in y. The

usual successive approximations [l] assure us that (3) has a unique

solution for Xi in some convex neighborhood i/(x0), and that dy(t)dx

= A(c(t), y(t))dx holds for dx = c'(t)dt and all tEL
In order to prove our theorem, we will join x0 and xi by any other

smooth curve c* in U. Let y*(t) be the solution of (3) corresponding to

c*. Under the conditions of our theorem, we show that y(l)=y*(l),

i.e. y(x) is uniquely defined by integration along smooth curves.

Finally, we have to show that (1) holds for this y(x) for all hEE. In

view of the last sentence of the preceding paragraph this will be

established if for any AGP, ||ä|| <e, we find a c with c(0) =x0, c(l) =Xi,

c'(l)=h. Take in U a spherical neighborhood about xi, with radius

e/2. Then for ||ft|| <e the point Xi — h/2 is in that neighborhood, hence

the "parabola" c(t) = (1 - t2)x0 + 2/(1 - t)(xi - h/2) + t2xi

= (l-t){(l-t)xo+t(xi-h/2)}+t(l-t)(xi-h/2)+txi) is in U; this

is a curve of the desired property.

3. Let c and c* be two smooth curves joining x0 and Xi in U. A

homotopy of c and c* is defined by

(4) c,(t) = (1 - s)c(t) + sc*(t), s E I.

All c,(t) are C1 curves, for fixed s. By hypothesis, suplS=rJ,V€v \\A(x, y)\\

< oo, hence (3) has a solution for any c, and some 5, ||xi—Xo|| <ô (cf.

[l, Theorem l]). As a preliminary step, we have to study the differ-

entiability with respect to s of this y,(t), given by

(5) y.(t) =yo+   [ A(c.(t), y,(r))((l - s)c'(t) + 5C*'(r))dr.
Jo

If dy,(t)/ds exists and is continuous on the compact set IXI, the

function z,(t)=dy,(t)/ds satisfies the integral equation
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z.it) =  f'[dxAic.ir),y.ir))iii - s)c'ir) + sc*'(t))](c*(t) - c(r))dr
J o

(6) +   Í'aícÍt), y.(r))(c*'(r) - c'(r))dr
Jo

+   f\dvA(c.(r),y.(T))((l - s)c'(t) + SC*'(r))]z.(r)dT,
Jo

which is of the type

(6a) z,(t) = P(s, l)+ f Q(s, T)z.(r)dr
J o

with continuous (hence bounded) P(s, t) and Q(s, t) ((s, t)ElXI).

Both (5) and (6) have unique solutions which are continuous on the

whole oí IXI (use [l, Theorem 3]), hence we may represent y,(t) as a

Stieltjes integral in the variable 5; using the abbreviation introduced

in (6a) we have

y.it) - yoit) =   I   dty,it) =   I   Pia, t)da +  1      I   Qia, r)d,y,ir)dr.
Jo Jo J0   J0

Introducing Zis, t)=f¡zait)da-r-yoit)—y,it), we finally have an

integro-differential equation

(7) Zis,l)=(    f Qia,r)d.Zia,r)dT, Z(0, t) = 0.
J0   Jo

We say that Zis, t) is Lipschitzian in 5. For the integral this is trivial;

to see it for y,(i) remark that Aidt), y,it)) is uniformly continuous

on the compact set is, t)ElXl. If we denote by L(c) the length of

the curve c, we see from (3) that

Hit) - y,(0|| < M + e)iLic) + Lie*)) | s - s\

if for e>0 we choose 8 to have \s — s\ <5 imply ||v4(c,(i), y,(0)

— Aiciit), yj(/))|| <e. We know now that there exists a constant Z,

\\Zis, t) —ZiS, t)\\ <Z\s — $\ for I s — $\ <S. This is sufficient to use the
standard procedure to infer that Z(s, t) = 0 is the only solution of

(7), as we have by successive approximations ||Z(s, i)|| <||()||/ta.

hence ||Z(s, i)|| <2k~1\\Q\\kZsth/k\ for all natural *. Therefore y,(<) is a

Cl function in s.

4. By partial integration of the second term in (6) we obtain
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dy (1)       Ci
-^~ =   I    [d.A(c(r), y.(r)){(l - ,)6'(t) + sc*'(t)}](c*(t) - C(r))ár

- f\dxA(c.(T),y.(T))(c*(T) - c(t))]{(1 - s)c'(t) + sc*'(T)}dr

+   f\d,A(c.(r), y.(r)){(l - s)c'(t) + sc*'(t)}] ̂  ¿r
J o as

- f \dvA(c.(T), y.(r))(c*(T) - c(t))] ^ä ¿r.
J o dt

As   dx={(l-5)c'(0+5c*'(í)}di+{c*(í)-c(í)}¿s,   dy=(dy,(t)/dt)dt
+ (dy,(t)/ds)ds, we finally have our Stokes's formula

y1(l)-yo(D= -^¿5

=  I {¿».4 (x, y)¿x A dx + dyA (x, y)dx A dy
J J lyj

=   I  j    54 (x, y)dx,
J J /vr'rxr

which from (5) may be written in an easily understood shorthand

(8) <p      A(x,y)dx=  I   j       SA(x, y)dx
J e'-e J  J c(j,i)

and from which by the assumption of our theorem we have

yi(i) = yo(i),

or, in our previous notation y(xi) =y*(xi). This completes the proof.

In  the  finite dimensional  case,

dim y(U) = min(dim E,  miniet/dim ^4(x, P)).
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