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In a previous paper [l] we presented a characterization of homo-

thetic transformations between closed surfaces in terms of their mean

curvatures. Here we reach a corresponding result about the Gaussian

curvatures, which improves a theorem of A. Aeppli in the three-

dimensional case [2, Satz 10]. Notations in [l] will be adopted.

Lemma. Suppose S and S are closed orientable strictly convex C2 sur-

faces and h : S—>S is an order-preserving differentiable homeomorphism.

If, referring to a common interior point as origin, X = kX and

khijh^g112/^12^!, where hij and h{j are the second fundamental tensors,

(hij) = (hi,)~l and g, g are the determinants of the first fundamental

tensors, then h is a homothetic transformation.

Proof. Differentiating X = kX,

Xi = kXi + kiX,

(1) Xa = kXij + kiXj + kjXi + kijX,

hnÑ + Thi,Xh = k(hijN + ThijXh) + kiXj + kjXi + knX.

Taking scalar product with N,

(2) hii(N-lt) - pTUn = hi* - pkij.

From (1) we have

-gUiJf m kynN + kXX (kiX, - ktXO.

Taking scalar product with A7,

gl"(N-Tl) = kY12 + N-[kX X (kiX, - k,Xù].

Substituting in (2) and contracting with h'',

k
h"kij + Chkh = — (2 - 4MV7S1'*) ^ 0.

P

Hence k = const [3; 4, Chapter II]. And so h is a homothetic trans-

formation.

Theorem. Given two closed orientable strictly convex surfaces S, S

in E3 of class C2 and a differentiable homeomorphism h : S—>S, if,
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referring to an origin interior to both surfaces, X = kX, k2~R = K, then h

is a homothetic transformation with center 0.

Proof. We may assume h to be orientation preserving for if it

reverses the orientation then we may combine to it the reflexion

X—^ — X. By well-known principles we have khijhijgll2/gll2'^.2, since

|Ay| =\kh~ijgll2/gll2\. Hence h is a homothetic transformation, by

the lemma.

Corollary 1. With the same assumption except that

k2K = K + 4iX-N/X-X)H+ iiX-N/X-X)2

then h is an inversion with center 0.

Proof. Let h*: S-+S* be the inversion X* = X/X-X. Then

iX*-X*/X-X)K* - K + iiX-N/X-X)H + 4(X-N/X-X)2.

And by the main theorem hQi*)~l: S*-+S is a homothetic trans-

formation. Hence h is an inversion.

Corollary 2 (C. S. Hsü [5]). If the Gaussian curvature of a closed

surface at each point equals the inverse square distance from an interior

point 0, then it is a sphere with center 0.

Remark 1. Under suitable boundary condition, the theorem holds

for surfaces with boundaries. In this case we use the result of [ó] in

place of [3].

Remark 2. Following some limiting process the theorem can be

proved, when O lies on both surfaces. In this case too we use [ó].
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