
ON RUNS OF RESIDUES1

D. H. LEHMER AND EMMA LEHMER

According to a theorem of Alfred Brauer [l] all sufficiently large

primes have runs of / consecutive integers that are fcth power residues,

where k and / are arbitrarily given integers. In this paper we consider

the question of the first appearance of such runs.

Let p be a sufficiently large prime and let

r = r(k, I, p)

be the least positive integer such that

(1) r,     r + 1,     r + 2, ■ • • ,     r+l-1

are all congruent modulo p to &th powers of integers >0. It is natural

to ask, when k and / are given, how large is this minimum r and are

there primes p for which r is arbitrarily large? If we let

A(k, I) = lim sup r(k, I, p)
p—» «

then is A infinite or finite, and if finite what is its value?

It is easy to see that

A(2, 2) = 9

so that every prime p > 5 has a pair of consecutive quadratic residues

which appears not later than the pair (9, 10). In fact if 10 is not a

quadratic residue of p then either 2 or 5 is, and so we have either

(1, 2) or (4, 5) as a pair of consecutive residues.

By an elaboration of this reasoning M. Dunton has shown that

A(3, 2) = 77,

and more recently W. H. Mills has shown that

A(4, 2) = 1224.

Both of these proofs are as yet unpublished.

In contrast to these results we prove in this paper that

(2) A(2,3)=co,

and
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(3) A(*,4) =«», k£ 1048909.

In other words, by proper choice of p the appearance of a run of 3

quadratic residues or of 4 higher residues can be postponed as long as

desired.

Proof of (2). Let A be a positive integer. Then it suffices to prove

that there is a prime p for which

(4) r(2, 3, p) > N.

Let

be all the primes í= N.

By the quadratic reciprocity law, those primes which have a par-

ticular prime qi as a quadratic residue belong to a set of arithmetic

progressions of common difference 4g,¿. Those primes which have q,

for a nonresidue likewise belong to another set of arithmetic progres-

sions of difference 4c¿. If we combine the progressions of the first kind

for every prime qi=i (mod 3) with those of the second kind for every

prime gi = 2 (mod 3) and use Dirichlet's theorem on primes in arith-

metic progressions we see that there exists a prime p such that

(-) =• q (mod 3) (q * 3, q ^ N).

Using the multiplicative property of Legendre's symbol we see that

(5) ( — J = m (mod 3) (m ^ 0 (mod 3), m Ú TV).

But among any three consecutive numbers g N there is one congruent

to —1 (mod 3) and hence, by (5), is a nonresidue of this prime p.

Hence the first run of three consecutive quadratic residues lies be-

yond N. This proves (4) and (2).

Proof of (3). The following theorem enables one to prove that for

/ = 4, A(k, I) = °° for all k up to high limits. It is clear that for such a

program one may confine k to odd prime values and take / = 4.

Theorem A. Let k and p* = kn+\ be odd primes. Suppose further

that 2 is not a kth power residue of p*, and p* is small enough so that

it has no run of 4 consecutive kth power residues. Then A(k, 4) = ».

For the proof we need the following lemma which is a special case

of a theorem of Kummer [2].
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Lemma. Let k be an odd prime and qh q2, ■ ■ ■ , qt be any set of distinct

primes different from k. Let 71, y2, ■ ■ ■ , yt be a set of kth roots of unity.

Then there exist infinitely many primes p=l (mod k) with correspond-

ing kth power character x modulo p such that

x(qù = 1 i (i= Kl)/)-

To prove the theorem let TV be an arbitrarily large integer and let

3i, q2, • ■ ■ , Çt be the primes ^ N with the exception of the prime p*.

Choosing a nonprincipal character, let y i be the &th power character

of qi modulo p*. By the lemma there exist infinitely many primes

p==l (mod k) such that the q's have the same characters modulo p as

modulo p*. By the multiplicative property of characters this will be

true of all the integers m^N that are not divisible by p*. Hence p

has no run of 4 consecutive residues ^7V unless one of these residues

is a multiple of p*. But two units on either side of this multiple of p*

we find numbers congruent to +2 (mod p*) which are nonresidues

of p* and hence of p. Hence there is also no run of 4 residues which

includes a multiple of p*^N. This proves the theorem.

The fact that A (3, 4) = =° follows from the theorem by setting

k = 3 and p* = 7. Similarly by taking k = 5 and p* = ll we have
A(5,4)=°o.

There is good reason to believe that A(k, 4) = 0° for all k. To prove

this it would suffice to prove for each prime k the existence of a prime

p* = kn + l satisfying the hypothesis of the theorem. If » is not too

large, then p* = kn + l will not have 4 consecutive Ath power residues.

In fact n is precisely the number of residues altogether. Trivially, if

w = 2 we have A(k, 4) = 00 as with k = 3, 5, 11, 23, etc. With a little

more effort we can prove

Theorem B. // n ^ 12 then A(k, 4) = 00.

Proof. We may suppose that k>5. Let p* = kn + l be a prime not

satisfying the hypothesis of Theorem A. This failure is not due to the

fact that 2 is a residue of p*. In fact if 2 were a residue, p* would

divide 2" —1 by Euler's criterion. Since n is even and 5¡12 this re-

stricts p* to the values

3, 5, 7, 11, 13, 17, 31.

In each case the corresponding value of k is í¡5. Hence 2 must be a

nonresidue along with —2 and (p ± l)/2. Hence we may suppose that

p* has a run of 4 residues

2 < a, a+ 1, a+ 2, a + 3 < (p - l)/2
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as well as the negatives of these modulo p*. Besides these 8 residues

there are the two residues congruent to ± (a + 2)/a ^ + 1. These two

are isolated since

a+ 2 2 a + 2 2
-1 = —   and-h 1 = — (a + 1)

a a a a

are obvious nonresidues. The reciprocals +a/(a-\-2) are also isolated

residues and they are new because

a + 2 a
- =-— (mod p*)

a a -\- 2

implies

a(a + 2) m -2 (mod />*)

in which a product of two residues is congruent to a nonresidue. In-

cluding the residues +1 we have accounted for at least 14 distinct &th

power residues of p*. Hence 14^« = 12, a contradiction. Therefore

p* must satisfy the hypothesis of Theorem A and so A(k, 4) = oo.

A more elaborate argument involving the factors of 3n —1 and the

Fibonacci numbers yields a theorem in which the 12 in Theorem B is

replaced by 36.
Let po = kn0-\-i be the least prime congruent to 1 modulo k. Primes

k for which no(k) ^38 are relatively rare, only about 3% of all the

primes < 50000 by actual count. The least such prime is k= 1637 with

«o = 38, and the largest value for n0 for primes less than 50000 is

Wo = 80 for k = 47303. The values of k< 50000 were calculated on the

SWAC and were tested on the 7090 by John Selfridge for pairs of

consecutive &th power residues. It was discovered that in this range

the only pairs are the trivial pairs (co, o> + 1) and

(u2=p— u— 1, ü>2-fT = £—co), which appear whenever n0 is a multiple

of six. Since such pairs cannot obviously combine to make a quad-

ruplet they were eliminated from the next run, made entirely on the

7090 by John Selfridge, for k g 1048909 in which no nontrivial pairs

occurred. The largest value of n0= 156 occurred for ¿ = 707467. These

numerical results for which we are very grateful enable us to state

the following theorem, using Theorem A.

Theorem C. If k g 1048909, then A(k, 4) = ».

More generally one can ask about the first appearance of / consec-

utive numbers each with specified fcth power character modulo p

= fe«+l, excluding of course the case already considered in which all
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the numbers are ßth power residues. This seemingly more difficult

problem is unexpectedly simple. Regardless of / the first appearance

of such a set of consecutive numbers may be delayed indefinitely by

proper choice of p. In fact if we set all the 7's in the lemma at 1 we

can find primes p having all the primes ^ N and hence all the numbers

g N as £th power residues. Hence if the specified characters contain

as much as a single nonresidue the first appearance can be made to

occur beyond N.

In a future paper, written jointly with W. H. Mills, we determine

the finite numbers A(5, 2), A(6, 2) and A(3, 3).
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