
A GENERALIZATION OF A THEOREM OF NEWTON

J. N. WHITELEY

1. The  following  theorem,  attributed  to  Newton,  appears  as

Theorem 51 of [l].

Theorem 1 (Newton). Let

Pn(a) = \Z)   EM

where En(a) is the elementary symmetric function of degree n in the m

real variables ax, ■ ■ ■ , am. Then

[Pn(a)]2 ^ pn+i(a)pn-i(a), m ^ n + 1,

with equality if, and only if, the a's are all equal.

In the following pages we shall prove the following generalization

of Newton's Theorem.

Theorem 2 (Generalization of Newton's Theorem). Let

T„\a) = co-eft of t   in ü (1 + a¿í)\ k > 0,

(D)

Pm" (a) = co-eft of t  in  H (1 — a,i) , k < 0,

where the parameter k does not appear in the notation for obvious reasons

of neatness. Suppose further that a^O, i=l, ■ • • , m. Then for

(with    n < k, k not integral,
k>0 { *     '

\ n < km,       k integral,

(.)     [rrW]Vrr"«.>rr>o.)ï (*)'(,?i)X-l)"

and for k<0,

a»  [r^ivrrwr'c.)*(-)•(,-)X*r
There is equality, in both cases, if and only if all the a's are equal.

Corollary to Theorem 2. For k > 0
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{

M < k +  1,

n < km + 1,

f T™(a) l1'»

¡CM  ÍC-.)

k not integral,

k integral,

,(»-!).
(a)] 1/ (n-l)

and for k<0,

Í rln)(a) I1/-

C)    C-0
TLn %) I1''""1'

Equality occurs when all the a's are equal, and only then.

This corollary follows from the theorem on multiplying together

the inequalities for n= 1, 2, • • • . For a similar thing see the deduc-

tion of Theorem 52 in [l] from 51 in [l].

The case k = — 1 of Theorem 2 is not new, being due to Professor

I. Schur. Professor Schur deduced the result in this case from a theo-

rem for multiple integrals. See Theorems 220 and 221 in [l].

It should be noticed that in Theorem 2 the variables are considered

non-negative. A simple example, with k= — 1, m = 2, n = 2, and

ai= — a2 confirms that this is a necessary limitation.

We shall not give a proof of the case k = 1 of Theorem 2. For in this

case the result reduces to a weaker form of Newton's Theorem, in

which the variables must be non-negative. The cases k = v,p = 2, 3, ■ ■ ■

are all consequences of the case k=l. This can be seen by considering

the set of mv numbers obtained from the set ai, ■ ■ ■ , am by repetition

v times.

The inequalities of the theorem can be used in the proof of the

result obtained in [2]. Alternatively, if that result is obtained inde-

pendently, a weak form of Theorem 2 can be deduced from it.

In §6 we shall give a brief discussion, using our method, of the

related problem of finding a lower bound to the L.H.S. of (b).

2. In this paragraph we prove two lemmas.

Lemma 1. For k>W,

'Note: When k = l, T^{a)=E^(a), the elementary symmetric function. So

(d/dam) T^+1)(a)=E^ll(a) where E^W^E^Xa) with am = 0. Hence the familiar rela-

tion E^'ia) =amEl^2i\o-)+E'^_l(a) is also a special case of (c), Lemma 1, with n re-

placed by (»+1).
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(c) ± r» ^) + * — T- ""M = *r» "^
da,- da,-

and for k<0

(d) -Pm (a) -a{-Tm     (a) = (-k)Tm     (a).
dai dai

Proof. The case k<0 is typical. The definition of 7^ (a) is

<o m

E tïw = n a - «;» •
n-0 y-i

Therefore,

£ (—- Tm (a))t  =- II (1 - «¿) ,
„_o \oa¡ / 1 — ait y„i

and

(i - «i/) s (— ri (a) ) < = - ¿/ n (i - <m)* - - */s tit/.
n=0 Wo,- / j-1 n-0

Hence the result.

Lemma 2. For k>0

(e) ¿ — PÍn,(a) = (mk-n+ l)TÜT%\a),
i-i  dai

and for k<0

(i) £ — T?(a) = (-mk + n- l)T^l\a).
i-i  da,

Proof. The proof follows from Lemma 1. We sum overt = 1, ■ ■ ■ ,m

in Lemma 1, and use Euler's theorem on homogeneous functions.

3. Proof of Theorem 2. Case 1, k <0. We use a double induction on

m and ». The initial step of the induction will receive a separate dis-

cussion in 5. For the moment, we content ourselves with proving that

the result holds, in the case k<0, for the pair n, m (nïï2, m¡z2) if it

holds for all pairs m', n with m' <m and all pairs m, n' with n' <n.

Let ai, • • • , am be variables which are subject to the conditions

(1) 0, fc 0 (♦ - 1, • • - , m),        TTl\a)T^\a) = 1.

These conditions define a closed, bounded region in Euclidean m-
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space. For the L.H.S. of equation (1) has positive coefficients and con-

tains the terms a\n (i = \, ■ ■ • , m). Also, the only boundary points

are those with a, = 0, for some/, 1 ̂ j^m.

Let M denote the maximum of

(2) [Tl:\a))'

under the conditions (1). M must be attained at a point of the region

(1) since this is both bounded and closed. This point cannot be a

singular point on the surface (1), for by Euler's theorem on homo-

geneous functions we have

£«,— [rrWr'i«)] = 2n[Ti:+1Y:-1)] = 2«
,_i     dat

so the first partial derivatives cannot all vanish.

Suppose first that a¿ ̂  0 (i = 1, • • • , m) at the point where M is

attained. Then we can apply Lagrange's conditions at this point, as

follows:

(3) ± F-W - X /- [Tt%)T^%)] = 0   a - 1, ...,«)
da,- da,

or

(4) 2Pm (a)-Tm (a) = X< Tm      -Tm      + Tm      - Tm      > .
dai \ dOi dai )

Now, multiplying each (4) by a, and adding, we get

2Tl"\a) 22ai — T?
(5) "      dai

j     (»+D A          ¿         (»-D             <—1) A          3 («+1)\=   X < i m 2-1 ai -  I m +   Im 2-iai -   I«■ f  •
v <-i     dat t-i     da^ ;

Using Euler's theorem on homogeneous functions, (5) gives

(6) X=[rr)(a)]2/Pri)(a)Pri)(a).

Next we use (4) directly to obtain an upper bound for X. We add

(4) for each i (*«= 1, • • • , m) and use (f) of Lemma 2 to get

2Pm ( — km + n — l)Tm

(?) = X{ T^i-km + n - 2)tL"-2> + T^i-km + n)T?\.
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Hence

PÍn>7Ín~1) [2(-km + n - 1) - X(-km + n)]

(8) = X(-km + n - 2)T^tT2)

or

r(n+l)r(n-i)

(9) 2(-km + n - 1) - X(-km + n) =X(-km + n- 2)     "        "
y^(n) yi(n—1)

which is the same, after using (6), as

(10) 2(-km + n - 1) - X(-km + n) = (-km + n- 2)(X')~1

where

(11) X' = [Tl:-1\a)Y/TLn\a)TLn-%).

If we make the inductive hypothesis

n    / — km + n — 2\
X'=-(-Z-)

n — 1 \—km + n — 1/

so

n- 1
2(-km + n - 1) - X(-km + n) ^-(-km + n - 1)

n

or

( — km + n — l){2n — [n — l]} ^ nX( — km + n)

which is

n + 1 / — km + n — 2\

n    \    —km + n    J

and this is the result we require. The case of equality certainly occurs

when all the a's are equal. Moreover, from the above, if

m + 1 /—km + n — 1\

n    \    —km + n    )

then

n    / — km + n — 2\
X' =-(-I

« — 1 \—km + n — 1/

so the inductive hypothesis applies to this part of the theorem also.
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Next, suppose there are only v<m nonzero a's at the point where M

is attained. Induction on m gives

^       rT(nV M2/T(n+1V nt«-"/ V <-• n+lf-kv+n- 1\
X = [T,   (a)] /T,      ia)T,      (a) ^-(-■—■-)

m     \    — kv + n    /

w + 1 / — km -\- n — 1\

»    V    — km + «    /

This completes the case k < 0, apart from the initial step n = 1, m = m

and m = \, n = n of the induction hypothesis, which will be discussed

later.

4. Case 2, &>0but not integral. The condition n<k assures that

all coefficients of the polynomial are positive. In this case also, the

region is both closed and bounded. The old argument carries through

except that the direction of the inequalities changes.

5. The initial step of the induction.
(A) The result is trivial for w = 1, any n.

(B) For k<0, the result when n=\, any m, takes the form

(I) [T^ia)UT:\a).T:\a).2(-^-\       ■
\— km + 1 /

Now

and

so (I) gives

2/ »     V km      ( *    i j ^       )
* ( 2>i)   = -1*(* - 1) 2>< + 2*   E a<oy|-

\ ,_i     / ta-1   I ,_l ,<y )

or

(J) (w - 1) E «î - 2 £ a,0i 2t 0.
•-1 i<i

Now (J) is nothing more than the inequality

E  (<H - a,)2 è 0
•<j'sm
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where equality holds only if a,- = a,- (i = I, • ■ ■ , m;j = 1, ■ • • m).

For k > 0 the reasoning in (B) is similar.

6. A related problem. The method used above may also be used to

find a L.H. bound to the ratio in (b). However, there are difficulties.

For 0>k> —1, m>l, the lower bound to

rT(n)/ Mî/T(n+1)/- \T(n_1)/" ^
[Tm (a)] /Tm     (a)Tm     (a),

which we find, is not as good as

<i2)        O'/L-X+ù-
For k^ —1, we do get the expected value (12) as our lower bound.

The reasoning is as follows.

Equation (10) can be written

(10a) 2 - (X')-^l -j) = x(l + y)

where

so

— km + n — 1

X = {26- (X')~l(e- l)}(tf+l)-i.

For m = 1 the hypothesis

n    f-k + n - 2\
(13) X'£-(-)

n- l\-k + n- 1/

gives

»+ l/-k + n- 1\

n    \   — k + n   )

But, for 0>£>-l,

dX_{2- (X')-1}«? + 1) - {8(2 - [X'H + [X']-1}

dd (e + i)2
<o.

So, for m>l, the lower bound for X which is given by (10a) and the

hypothesis



1963) A GENERALIZATION OF A THEOREM OF NEWTON 151

v*-=- (-* + -»)
n- l\-k + n- 1/

is less than

n+ 1/-* + »- 1>+ 1/-& + «-1\

«    \   — ¿ + n   /

On the other hand, for k^ — 1,

¿>X
0

do

and we do get

n + 1 / —A + » — 1f \/-k + n- i\ _ /¿y/   *   \~y  k Y

M      \       -¿+«      / \»/\»+l/      \»-l/

as our lower bound.

That the hypothesis

n    / -k + n - 2\
X'2t-(-)

n- l\-* + » - 1/

is true in the initial case can be seen as follows. From paragraph 5, the

result required is

(m        \ 2                k        ( m5 ü "l

£a.)   2t---\kik-l)lZai+2k E^;),
,_l    /         k — 1 { ¿_i ,</        ;

which is true, with equality only if m=\.
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