A CHARACTERIZATION OF MONOMIALS

R. BOJANIC AND W. STOLL

A monomial of n complex variables is a function of the form

$$
\underset{a z_{1}^{p_{1}}}{\boldsymbol{z}_{2}^{p_{2}}} \cdot \cdots \boldsymbol{z}_{n}^{p_{n}}
$$

where p_{1}, \cdots, p_{n} are non-negative integers and where a is constant. The set

$$
E=\left\{\left(z_{1}, \cdots, z_{n}\right)| | z_{1}\left|<1, \cdots,\left|z_{n}\right|<1\right\}\right.
$$

is called the unit polycylinder. The set

$$
D=\left\{\left(z_{1}, \cdots, z_{n}\right)| | z_{1}\left|=1, \cdots,\left|z_{n}\right|=1\right\}\right.
$$

is said to be the distinguished boundary of E. Note that D is not the whole boundary of E.

We want to prove the following theorem:
The monomials are the only entire functions whose absolute value is constant on the distinguished boundary of the unit polycylinder.

Proof. Denote by \mathbf{C}^{n} the space of n complex variables. The elements are the vectors

$$
z=\left(z_{1}, \cdots, z_{n}\right)
$$

whose coordinates z_{p}, are complex numbers.
Now, let f be an entire function, whose absolute value $|f|$ is constant on D. If $|f|$ is identically zero on D, then f is identically zero on \mathbf{C}^{n}. Therefore, f is a monomial.

We may exclude this case and assume, without loss of generality, that $|f(z)|=1$ for $z \in D$. Now, we want to show that such an entire function f is either constant or has zeros in \bar{E}. Assume $f(z) \neq 0$ for $z \in \bar{E}$. Then, we have by a well-known theorem

$$
\begin{aligned}
\operatorname{Max}_{z \in \overline{\bar{B}}}|f(z)| & =\operatorname{Max}_{z \in D}|f(z)|=1 \\
\operatorname{Min}_{z \in \overline{\bar{B}}}|f(z)| & =\underset{z \in D}{\operatorname{Min}}|f(z)|=1 .
\end{aligned}
$$

Therefore, f is constant. Consequently, f is either constant or has zeros in E.

Now, we want to prove that $f(z) \neq 0$ for all z in

$$
A=\left\{\left(z_{1}, \cdots, z_{n}\right) \mid z_{1} z_{2} \cdots z_{n} \neq 0\right\}
$$

Received by the editors February 6, 1961.

Define the function g by

$$
g\left(z_{1}, \cdots, z_{n}\right)=\overline{f\left(\frac{1}{\bar{z}_{1}}, \cdots, \frac{1}{\bar{z}_{n}}\right)}
$$

on A. This function is holomorphic on A since its real partial derivatives exist, are continuous, and satisfy the Cauchy-Riemann equations

$$
g_{z_{p}}\left(z_{1}, \cdots, z_{n}\right)=\overline{f_{z_{p}}\left(\frac{1}{\bar{z}_{1}}, \cdots, \frac{1}{\bar{z}_{n}}\right) \frac{\partial}{\partial z_{v}}\left(\frac{1}{\bar{z}_{v}}\right)}=0
$$

For $z \in D \subset A$, we have

$$
\begin{aligned}
g\left(z_{1}, \cdots, z_{n}\right) & =\overline{f\left(\frac{1}{\bar{z}_{1}}, \cdots, \frac{1}{\bar{z}_{n}}\right)}=\overline{f\left(z_{1}, \cdots, z_{n}\right)} \\
& =\frac{1}{f\left(z_{1}, \cdots, z_{n}\right)} .
\end{aligned}
$$

Therefore

$$
g\left(z_{1}, \cdots, z_{n}\right) \cdot f\left(z_{1}, \cdots z_{n}\right)=1 \quad \text { for }\left(z_{1}, \cdots, z_{n}\right) \in D
$$

The function $g \cdot f$ is holomorphic on A and identically one on D. Since A is a connected, open neighborhood of D, the function $g \cdot f$ is equal to one on A :

$$
f(z) \cdot g(z)=1 \quad \text { for } z \in A
$$

Therefore, we have $f(z) \neq 0$ for $z \in A$.
Our function f vanishes at most on the planes $\left\{\left(z_{1}, \cdots, z_{n}\right) \mid z_{v}=0\right\}$. Therefore f has the form ${ }^{1}$

$$
f\left(z_{1}, \cdots, z_{n}\right)=z_{1}^{p_{1}} \cdot z_{2}^{p_{2}} \cdots z_{n}^{p_{n}} \cdot h\left(z_{1}, \cdots, z_{n}\right)
$$

where p_{1}, \cdots, p_{n} are non-negative integers and h is an entire function which does not vanish at all, and whose absolute value is constant on D. Consequently, h is a constant. We obtain

$$
f\left(z_{1}, \cdots, z_{n}\right)=a z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}
$$

q.e.d.

University of Notre Dame
${ }^{1}$ See: Osgood, Lehrbuch der Funktionentheorie, Vol. III, Chapter III, 826.

