ENTIRE FUNCTIONS IN SEVERAL VARIABLES WITH
CONSTANT ABSOLUTE VALUES ON A CIRCULAR
UNIQUENESS SET!

S. BOCHNER

If for a function ¢(s)= D ¢ ap2® in the entire z-plane we have
|¢(2)| =1 on |2| =1, then the product

2 a3 —
0 0o 27

which is analytic in 270 has value 1 on |z| =1. Therefore it is
identically 1, and thus ¢(2) 0 for z50. Therefore ¢(z) =27h(z) where
h(z) #0 everywhere. But again |h(z)| =1on |z| =1, and for such an
h(z) we have h(z) =c, so that ¢(z) =cz?. By the use of the same meth-
od, Bojanic and Stoll [1] have recently given the following generaliza-
tion to functions which are holomorphic in the entire C#, for any #.

THEOREM 1. If for an entire function f(2g) =f(21, - - - , 2.) we have

| fGn - s tm)| =1
on the set

(1) . |{1|=1,"',I3‘nl=1
then

f(zl,...’zn)=cz‘;l...z::".

The authors invoke the lemma that if an entire function is #0 for
21+ - - 2,70 then it can be represented as a product

X 10)

in which k(z) #0 everywhere. We propose to avoid taking recourse to
this lemma and to obtain a more systematic theorem in the process.

We replace the point set (1) by a general point set S having the
following properties

(i) Siscircular, thatis,if ({1, + + +, ¢a) €S, then also ($if, - - -, $ab)
€S for any ltl =1.

(ii) S is connected.

(iii) S is a uniqueness set for entire functions, in the sense that if
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f(2) is 0 on S it is =0. We note that S is of this kind if it is part of
the boundary of a domain R such that, for z in R, f(2) can be repre-
sented by a suitable Cauchy integral in which integration extends
over S only.

THEOREM 2. If for an entire function we have [ f&)|=1onasetsS
then f(2) is a homogeneous polynomial

(2) A(zh Tty Z,.) = E am“'pnzzl,l tt z:”
prt: - +Pa=p
of some finite degree p = 0.
Proor. For any fixed ({) €S we form the function
6() = [z, - - -, twd)
in C! By property (i) of S we have |¢(z)| =1on |z| =1, and hence
by our introductory statement we have ¢(z) =c 27, that is

f(rlz’ Tt )g-nz) = Z"f(g'l, vt 7(”)-

Up to here the exponent p is a function of {. However it follows from

|zlp= If«.lz) tt ';g-nz)l

(for =2, say) that p is a continuous function on S. Furthermore it is
integer-valued, and S is connected by property (ii). Therefore p is a
constant number.

We can now form the difference

f(wlz’ Cet, Waz) — 2Pf(wy, - - -y Wa).

It is an entire function in w,, - - - ,-w, and 3, and it is 0 for (w)ES.
By property (iii) it is =0. If we now introduce the power series for
f(2), the conclusion of Theorem 2 follows. .

We next add one further property of S which is much more struc-
tural than the preceding ones.

(iv) On S we have

()
?' = ’ y = 1’ ce o0
D(s) o
where \i(2), - - -, Ma(2), D(2) are (homogeneous) polynomials in
2, 0, Zne
If now we introduce the factorization into irreducible polynomials
(3) D(z) = Dl(z [ S Dm(z am

then the following conclusion results.
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THEOREM 3. Furthermore, we have
€] fGy - - -y 2) = ¢ Di(2)?* - - - Du(z)Pm
for some exponents p1=0, - -+, pn=0.

Proor. If with the coefficients of (2) we form the polynomial

B(zl’ ) zu) = E a‘m---p,.)\jl’l ct X:n

Prt: - +Pa=p

then our assumption

| f6) |2 = 1 = 7©)F®)

implies that we have
(5) A(2)-B(z) = D(2)*

on S. Using again (iii) we conclude that this holds identically in z.
But all factors in (5) are polynomials and therefore (5) implies (4) by
simple algebra.

REMARK. If also ID.(§' )l =1,v=1, - - -, n, then conversely every
function (4) has constant absolute value on S.

Theorem 1 subsumes under Theorem 3 if we put

D(z) = 21 - - 2,; A(z) = 2l

, y=1---,n
2y

But we also obtain interesting statements for some types of sym-
metric domains. Assume for instance that #=k? and that our vari-
ables 2, - - -, 2, constitute a square array {z,,q}, b, q=1, -, k.
The associated “natural” uniqueness set is formed by the unitary
matrices

k
(6) Z Sobar = Oy
a1
see [2].
This gives
M($)
?uv =717
det| ¢|

where \,, are certain minors of the matrix {{,,} and

D) = det' qul
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is its determinant. Now, the determinant is an irreducible polynomial
and |D(§‘)[ =1, Hence the following theorem.

THEOREM 4. If f(2,,) ts defined holomorphic over the entire matrix
space, then it has absolute value 1 on the unitary set (6) if and only if
f(2) = e‘“(det| z,.l )?

for some integer p = 0.
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PRINCETON UNIVERSITY

ON A CRITERION FOR DETERMINATE
MOMENT SEQUENCES

DAVID S. GREENSTEIN

On page 20 of [4], the following criterion is given as sufficient for
the determinacy of a Hamburger moment sequence {u,}:

1) lim inf (o /n) < .

Attributed to Perron [2], it is obtainable only by transforming a
criterion for Stieltjes determinacy due to Perron. In doing so, I find
(1) not to follow from Perron’s result. In this note, I shall make the
proper correction to eliminate confusion caused by the error (e.g.,
(1) if valid would be more general than Carleman’s well known cri-
terion [1]). I also give an example to show that (1) is invalid.

Symmetrization of all mass distributions with the moments u,
shows that { u,.} is determinate provided that there is no more than
one symmetric distribution with the moments o, 0, us, 0, - - - . But
the latter condition is easily shown to be equivalent to Stieltjes
determinacy of the moment sequence {ﬂzn} (not the same as Ham-
burger determinacy of {uz.} [4]).

l;errc})n [2] gives as a sufficient condition for Stieltjes determinacy
of Hen
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