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If for a function <b(z) = 22ô av%v m the entire z-plane we have

|(£(z)| =1 on |z| =1, then the product

12 <vp- E —
0 0     z"

which is analytic in z^O has value 1 on |z| = 1. Therefore it is

identically 1, and thus </>(z) ^0 for z^O. Therefore <p(z) = z"h(z) where

A(z) t^O everywhere. But again | h(z) | = 1 on | z| = 1, and for such an

h(z) we have h(z) =c, so that <p(z) —czp. By the use of the same meth-

od, Bojanic and Stoll [l ] have recently given the following generaliza-

tion to functions which are holomorphic in the entire C", for any n.

Theorem 1. If for an entire function /(z) =/(zi, • • • , z„) we have

1/0*1, •• -,f»)| =1

on the set

(1) . |fi|   = 1, •■•, |f-|   = 1

then

,/ n PI Pn

f(Zh   ■   ■   •  ,  Zn)   =   C Zl     •   •   •  Z„  .

The authors invoke the lemma that if an entire function is 5^0 for

Zi • • • Zn^O then it can be represented as a product

PI Pn, -   ,
C Zi   • • • z„ «(z)

in which A(z) 5^0 everywhere. We propose to avoid taking recourse to

this lemma and to obtain a more systematic theorem in the process.

We replace the point set (1) by a general point set S having the

following properties

(i) 5 is circular, that is, if (fi, • • • , f„) £5, then also (fti, • • • , f„f)
ES for any |i| = 1.

(ii) 5 is connected.

(iii) 5 is a uniqueness set for entire functions, in the sense that if
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f(z) is 0 on S it is =0. We note that S is of this kind if it is part of

the boundary of a domain R such that, for z in 7?, f(z) can be repre-

sented by a suitable Cauchy integral in which integration extends

over S only.

Theorem 2. If for an entire function we have |/(?)| =1 on a set S

then f(z) is a homogeneous polynomial

(2) A(zi, ■ ■ ■ , zn) =       ¿2       aPl...PnzT ■ • • £
P1+ • • -+Pn=P

of some finite degree p^O.

Proof. For any fixed (Ç)ES we form the function

<t>(z) = /(fiz, • • • , f„z)

in C1. By property (i) of S we have \<p(z)\ = 1 on \z\ =1, and hence

by our introductory statement we have <p(z) =c zp, that is

/(flZ,   •   •   '   , UZ)   =   Z*/(fl,   •   •   •  , i-n).

Up to here the exponent p is a function of f. However it follows from

\z\"=  |/(fiz, • • • , ¿-„z) I

(for z = 2, say) that p is a continuous function on S. Furthermore it is

integer-valued, and S is connected by property (ii). Therefore p is a

constant number.

We can now form the difference

f(wiz, ■ ■ ■ , wnz) - zpf(wi, ■ ■ ■ ,wn).

It is an entire function in Wi, ■ ■ ■ , wn and z, and it is 0 for (w)ES.

By property (iii) it is =0. If we now introduce the power series for

f(z), the conclusion of Theorem 2 follows.

We next add one further property of S which is much more struc-

tural than the preceding ones.

(iv) On S we have

where Xi(z), • • • , X„(z), D(z) are (homogeneous) polynomials in

zi, • • • , zn.

If now we introduce the factorization into irreducible polynomials

(3) D(z) = Z)i(z)" • • • 7X»(z)"»

then the following conclusion results.
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Theorem 3. Furthermore, we have

(4) f(zu ■ ■ ■ , Zn) = c fli(«)" • • • Dm(z)*~

for some exponents pi^O, ■ • ■ , pm^0.

Proof. If with the coefficients of (2) we form the polynomial

75(zi, • • • , z„) =        2J       aPi---Pn^i  à • • X»
P1+- • -+Pn=P

then our assumption

I /(f) I2 - i=/(rt7(f)

implies that we have

(5) A(z)-B(z) = D(z)>

on S. Using again (iii) we conclude that this holds identically in z.

But all factors in (S) are polynomials and therefore (5) implies (4) by

simple algebra.

Remark. If also |2),(f)| =1, v = l, ■ ■ ■ , n, then conversely every

function (4) has constant absolute value on S.

Theorem 1 subsumes under Theorem 3 if we put

D(z)
D(z) = zi ■ ■ ■ zn; X„(z) = -> v = 1, • ■ • , n.

z.

But we also obtain interesting statements for some types of sym-

metric domains. Assume for instance that n = k2 and that our vari-

ables Zi, • • • , z„ constitute a square array {zp4}, p, q=l, ■ • ■ , k.

The associated "natural" uniqueness set is formed by the unitary

matrices

(6) ¿_i Çprïqr = Spq,

see [2].

This gives

.        Mf)
det I r I

where X,,,. are certain minors of the matrix {Çpq} and

D(¡) = det I fpq I



120 D. S. GREENSTEIN [February

is its determinant. Now, the determinant is an irreducible polynomial

and 17J>(f) | = 1. Hence the following theorem.

Theorem 4. If f(z„) is defined holomorphic over the entire matrix

space, then it has absolute value 1 on the unitary set (6) if and only if

f(z) = e«"(det | zr, | )"

for some integer p^O.
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ON A CRITERION FOR DETERMINATE
MOMENT SEQUENCES

DAVID S. GREENSTEIN

On page 20 of [4], the following criterion is given as sufficient for

the determinacy of a Hamburger moment sequence {pn} :

1/2»       2
(1) lim inf ißin  /n) < t».

Attributed to Perron [2], it is obtainable only by transforming a

criterion for Stieltjes determinacy due to Perron. In doing so, I find

(1) not to follow from Perron's result. In this note, I shall make the

proper correction to eliminate confusion caused by the error (e.g.,

(1) if valid would be more general than Carleman's well known cri-

terion [l]). I also give an example to show that (1) is invalid.

Symmetrization of all mass distributions with the moments pn

shows that {p„} is determinate provided that there is no more than

one symmetric distribution with the moments po, 0, ju2, 0, • • ■ . But

the latter condition is easily shown to be equivalent to Stieltjes

determinacy of the moment sequence {m2»J (not the same as Ham-

burger determinacy of {p2n}  [4]).

Perron [2] gives as a sufficient condition for Stieltjes determinacy

Of   {p2n}
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