ON THE SIMULTANEOUS SOLUTION OF A CERTAIN SYSTEM OF LINEAR INEQUALITIES

GEORGE J. MINTY

The author recently proved the following theorem:

THEOREM 1. Let \mathfrak{X} be a Hilbert space, with real or complex scalars and inner product $\langle x, y \rangle$. Let x_1, \dots, x_m and y_1, \dots, y_m be given such that

(1)
$$\operatorname{Re}\langle x_i - x_j, y_i - y_j \rangle \ge 0 \qquad (i, j = 1, \dots, m),$$

and let x be any point of X. Then there exists a point y such that

(2)
$$\operatorname{Re}\langle x_i - x, y_i - y \rangle \ge 0 \qquad (i = 1, \dots, m).$$

The proof was patterned after Schoenberg's [3] proof of Kirszbraun's theorem. B. Grünbaum [2] has generalized my and Schoenberg's proofs to obtain a theorem which incorporates Theorem 1 and Kirszbraun's theorem, and J. G. Wendel has contributed a neater proof of Theorem 1. With Professor Wendel's permission, I reproduce his proof:

LEMMA. Let \mathfrak{X} be E^n , with the usual (real) scalars and inner product, and let $x_1, \dots, x_m; y_1, \dots, y_m$ be given such that

$$(1') \langle x_i - x_j, y_i - y_j \rangle \ge 0 (i, j = 1, \dots, m).$$

Then there exists a point y such that

$$\langle x_i, y \rangle \leq \langle x_i, y_i \rangle \qquad (i = 1, \dots, m).$$

PROOF OF THE LEMMA. Let A be the matrix whose ith row is x_i , and let b be the column-vector whose ith element is $\langle x_i, y_i \rangle$. Then (2') is equivalent to $Ay \leq b$. If there is no solution for y, then by Stiemke's Theorem [1, Theorem 2.7] there exists a row-vector $\eta \leq 0$ such that

(3a, 3b)
$$\eta A = 0 \text{ and } \eta b = 1.$$

Suppose this to be the case. Then (3a) implies $\sum_{i} \eta_{i} x_{i} = 0$, hence for each j,

(4)
$$\sum_{i} \eta_{i} \langle x_{i}, y_{j} \rangle = 0.$$

Also (3b) implies

Received by the editors January 11, 1961.

(5)
$$\sum_{i} \eta_{i} \langle x_{i}, y_{i} \rangle = 1.$$

Expanding (1'), multiplying by $\eta_i \eta_j$ and summing on i, j, we have

(6)
$$\sum_{i} \eta_{i} \langle x_{i}, y_{i} \rangle \sum_{j} \eta_{j} + \sum_{i} \eta_{i} \sum_{j} \eta_{j} \langle x_{j}, y_{j} \rangle \\ \geq \sum_{j} \eta_{j} \sum_{i} \eta_{i} \langle x_{i}, y_{j} \rangle + \sum_{i} \eta_{i} \sum_{j} \eta_{j} \langle x_{j}, y_{i} \rangle$$

i.e., by (4) and (5), $2 \sum_{i} \eta_{i} \ge 0$. But $\eta \le 0$ and some $\eta < 0$ by (3b). We have a contradiction, and there is at least one solution for y.

PROOF OF THEOREM 1. First, we take up the case where $\mathfrak{X} = E^n$, and set $x_i' = x_i - x$; the conclusion follows by application of the Lemma to x_1' , \cdots , x_m' and y_1 , \cdots , y_m .

We next suppose that \mathfrak{X} is any finite-dimensional Hilbert space. If the scalars are complex, it is easily verified that $[x, y] = \text{Re } \langle x, y \rangle$ is real inner product provided the scalar product $\alpha \cdot x$ is restricted to real α , and that the resulting Hilbert space with real scalars is of dimension 2n. The conclusion now follows from the isomorphism with E^n or E^{2n} .

In case \mathfrak{X} is infinite-dimensional, we simply apply the above results to the (finite-dimensional) subspace spanned by x_1, \dots, x_m ; y_1, \dots, y_m and x.

REFERENCES

- 1. D. Gale, The theory of linear economic models, McGraw-Hill, New York, 1960.
- 2. B. Grünbaum, A generalization of theorems of Kirszbraun and Minty, Proc. Amer. Math. Soc. (to appear).
- 3. I. J. Schoenberg, On a theorem of Kirzbraun and Valentine, Amer. Math. Monthly 60 (1953), 620-622.

University of Michigan