
REMOTE POINTS IN ßR

N. J. FINE1,2 AND L. GILLMAN1'8

0. Summary. A construction by now well known establishes the

existence of a point in /3R that is not in the closure of any R-closed

discrete subset of R.4 Our purpose is to establish the stronger conclu-

sion:

(I) There exists a point p in ßR that is not in the closure of any

discrete subset of R;

equivalently (as shown below) :

(II) There exists a z-ultrafilter A" on R no member of which is

nowhere dense.

The proof turns out to be considerably more difficult than antici-

pated. If we assume the continuum hypothesis (designated [CH]),

then we can find such a point p (2.5); however, we do not know

whether the continuum hypothesis is necessary. The result is ob-

tained as a consequence of a more general theorem: for a suitably

restricted class of spaces X, a point with a somewhat stronger prop-

erty exists if and only if X admits an unbounded continuous function

(2.3).
A byproduct is: [CH] there exists a countable, completely regular

space without isolated points, one of whose points is not a limit

point of any discrete set (2.6).

1. Preliminaries. We recall that a subset 5 of a space X is nowhere

dense if cl 5 has void interior. Discrete subset means discrete in the

relative topology. R denotes the real line, Q the subspace of rationals,

N the subspace of natural numbers.

1.1. Proposition. Given F nowhere dense and closed in R, there

exists a discrete subset D of R such that D(~\F = 0 and DVJF=c\r D.

Proof. X — F is a union of disjoint open intervals Ia. Choose
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DaEIa discrete and with the endpoints of Ia as its only limit points.

Put D = UaDa.

1.2. All spaces considered will be assumed to be completely regu-

lar. Z(f) denotes the zero-set {x£-X":/(x) =0}, / being a continuous

real-valued function on X. In R (or any metric space), the zero-sets

are just the closed sets, but in general, they form a proper subclass.

A z-filter is a family of zero-sets closed under finite intersection, con-

taining with each member all larger zero-sets, and not containing

0 ; a z-ultrafilter is a maximal z-filter.

The z-ultrafilters on X are indexed by the points of ßX (the Stone-

Cech compactification of X); this correspondence, p-^A"(pEßX), is

one-one and satisfies

(1) Z E A" if and only if p E cW Z,

where Z is a zero-set [l, 6.5]. A z-ultrafilter A" is free if C\AP is empty

(pEßX-X).
The equivalence of (I) with (II) follows from 1.1 and (1).

1.3. Theorem.4 There exists a z-ultrafilter A" on R all of whose

members have infinite Lebesgue measure. In particular, if S is a closed

discrete subset of R, then p (JcLjr S.

Proof. Let fJ denote the z-filter of all closed sets in R whose

complements have finite measure. Let A" be any z-ultrafilter contain-

ing fJ. If Z is any closed set of finite measure, then some open set

UZ)Z has finite measure, whence R— UE^EAP; since Z is disjoint

from K-U, Z<$A".

1.4. In contrast, we can find a discrete D for which pEclßR D. Let

F be any nowhere dense closed set whose complement is of finite

measure; then FE$EAV, so that ¿>£cLjr P. Choose a discrete set D

such that clR POP (1.1) ; then ££chjR clR -D = cLjR D.
Let p denote Lebesgue measure on R. To find a z-ultrafilter con-

taining no nowhere dense set, one might naturally begin by consider-

ing the family S of all closed sets Z in R for which ^(int cl(R — Z))

is finite. Since p(U) ¿p(int cl U) for open U, S is a subfamily of

Eberlein's z-filter JF; therefore S is contained in a z-ultrafilter. How-

ever, we shall exhibit two members of £ whose intersection is nowhere

dense; since this intersection must belong to any z-filter containing 8,

the attempted construction breaks down.

Let A7, be a nowhere dense closed set whose complement is of finite

measure and such that the family of disjoint open intervals in the

canonical decomposition of R — N is ordered, in its natural order,
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like the set of rationals. Choose complementary, dense subfamilies

of these intervals, and let Ao and B0 denote their unions. Every point

of N belongs to cl ^oHcl B0. Define A =Ao^JN and B=B0[JN; then

A and B are closed. Since

niint cl(R - A)) = /i(int cl B0) = /i(int B) = m(#o) < °°>

A G8. Likewise, BE&- But .,4f\B is the nowhere dense set N.

Notice, by the way, that ju(int A) +¿u(int B) < <*>, while ju(int(.4 W5))

= « —in fact, AUB = R.

2. The main results.

2.1. Lemma. Given a space X and a nonnegative, unbounded, con-

tinuous function h on X, consider any unbounded increasing sequence

of positive values of h, and choose a sequence (J„)n<u of disjoint closed

intervals of R each of which contains one of these numbers in its interior.

Then the sets

(2) £„= {xEX:hix)EJn}

satisfy :
(i) Each En is a zero-set with nonvoid interior.

(ii) If (P„) is any sequence of zero-sets in X, with F„EEn, then

U„ Fn is a zero-set.

Proof, (i) is obvious: since /„ is a zero-set (in R) with nonvoid

interior, its total preimage £„ under h is a zero-set (in X) with non-

void interior.

To prove (ii), we argue in more detail. For each n, there exists a

continuous function sn on R equal to 1 precisely on the closed interval

/„, equal to 0 precisely on the disjoint closed set U*^„ Jk, and assum-

ing intermediate values everywhere else. Given (P„) as in (ii), write

P„ = Z(/„), with 0^/„^2_", Consider the infinite sum

g = /o- (¿0 o h) + fr isi o h) + ■ ■ ■ .

Because of uniform convergence, this defines g as a continuous func-

tion on X. Clearly, g has no zeros outside Un En; and for each n, g

agrees with/„ on £„. Therefore, U„ Fn is the zero-set Z(g).

2.2. A space X is pseudocompact if every continuous real-valued

function on X is bounded; this is the case if and only if every free

2-ultrafilter is closed under countable intersection [l, 5.8 and 5.14].

A cardinal m is measurable if there exists a nontrivial {O, l}-valued

measure (countably additive) on a set of cardinal m. Each such

measure determines a free ultrafilter closed under countable inter-

section, and conversely, the members of the ultrafilter being the sets
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of measure 1. Every cardinal greater than a measurable cardinal is

measurable. Every cardinal smaller than the first strongly inacces-

sible cardinal is wowmeasurable. [l, Chapter 12].

2.3. Theorem. Let X be a space such that:

(a) The cardinal of the set of all isolated points is nonmeasurable.

(b) There exists a family It of Hi dense open sets such that every

dense open set contains a member of 11.

Then a necessary and sufficient condition that X not be pseudocompact

is that there exist a free z-ultrafilter Av on X such that every dense open

set contains a member of A".

Proof. Necessity. By hypothesis, X admits an unbounded con-

tinuous function h, which we may assume to be nonnegative. For this

h, let En be as in (2), and define

(3) G = U Et (n< «).

By Lemma 2.1, each 5„ is a zero-set with nonvoid interior. Notice

that

int Sn = U int Ek.
k£n

Write 11= (i/„)MSa<Ml. Consider any ordinal a, with co=a<wi, and

assume inductively that for all £<a, we have defined a zero-set 5{

such that the family (int G)i<<« has the finite intersection property.

To define Sa, we first rearrange this countable family (int G)i<<»

into an ordinary sequence (Tn)n<o¡- Next, we define an increasing se-

quence (ni) of finite ordinals and a sequence (F¡) of zero-sets, as

follows. Let k <a), and assume inductively that n( have been defined

for all i<k, with wo< • • ■ <»*-i, and that P,- have been defined for

all / =• «*_i. By assumption, Tof~\ ■ ■ ■ C\Tk meets int 5„t_I+i (where

«_i= — 1) and hence meets int P„t for some «*>«*_!. Since Ua is

open and dense, we can choose a zero-set F„.k with nonvoid interior

and satisfying

(4) Fnk c To r\ ■ ■ ■ r\ n n Enk r\ ua.

Finally, we put F¡ = 0 for w*_i</<w*.

This completes the definition of the sequence (F¡). Obviously,

FjEEj for each j. We now define

(5) Sa = Fo W Fi W • • • .

By the lemma, Sa is a zero-set. To complete the induction step, we

observe that any finite intersection of sets int S(, for £ <a, contains
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a set Tof^ • ■ ■ f^Tk; therefore it contains F„k and hence meets int Sa.

Consequently, the collection (int 5{){Sa has the finite intersection

property.

The family of zero-sets Sa (a<ui) thus defined has the finite inter-

section property, and, accordingly, it is contained in a z-ultrafilter

Ap. Since n„<u Sn = 0, A" is free. By (4) and (5), t7a35a; it follows

that every dense open set contains a member of A".

This completes the proof of necessity. We remark for later refer-

ence that by (1),

(6) p E dßx So.

Sufficiency. We shall prove that the given 3-ultrafilter A" is not

closed under countable intersection. We assume the contrary and

obtain a contradiction.

With (b), our hypothesis implies that Ap has a subfamily (Za)a<u,

such that every dense open set contains some Z„.

First we observe that each A EAP contains a nonisolated interior

point. For, if not, then int A consists entirely of isolated points of X.

Since A —int A is closed and nowhere dense, its complement contains

some Za; thus, int A(~\Za = AC\ZaEA"'. The trace of Ap on int AC\Za

is then a free ultrafilter closed under countable intersection; but by

(a), this is not possible.

We proceed with the proof. Given a <wi, assume, inductively, that

zero-sets A±EAP have been defined for all ¿<a such that

(7) A( C Z{

for £<a and

(8) A(DAt+i

for £ + l<a, and that points xj have been defined for all £ + 1 <a

such that

(9) xi is a nonisolated interior point of A( — A^+i

for f+Ka
If a is a limit ordinal or zero, define

Aa = D Aèr\ Za;
K«

by our assumption, AaEAp.

If a —I exists, choose a nonisolated interior point #a_i of Att-i.

Since A" is free, there exists ZEAP for which xa-iEZ. Define
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Aa = ZC\ Aa-iC\Za.

Then xa_i is a nonisolated interior point of Aa-i — Aa.

By induction, we have defined A± and Xj such that (7), (8), and (9)

hold, for all £<wi. The latter two conditions imply that the set D of

all points X{ is nowhere dense; hence X — clD contains some Z{. But

this is impossible, since xj£i>, while by (7) and (9), xj£Zj. This con-

cludes the proof of the theorem.

2.4. It is clear that portions of the result can be stated more gen-

erally. For example, hypothesis (a) was not used in the proof of

necessity.

It is also possible to extract from the proof some finer information

contrasting closed sets with zero-sets. The relevant observation is

that a nowhere dense closed set in X may have a point p of ßX in

its closure even though no nowhere dense zero-set has; e.g., consider

the set of limit ordinals in the space of all countable ordinals (see

[1,5.12]).
We remark that condition (b) is properly weaker than the require-

ment that X admit at most !tfi dense open sets; for example, the pre-

filter of dense open subsets of /3N is of cardinal ^exp exp ^0>^i, but

it has a base—namely, {n}—of cardinal 1.

2.5. Theorem. [CH]. There exists a point p in ßH that is not in the

closure of any discrete subset of R. In fact, the set of all such points is

dense in the space /3R — R.

Proof. Under [CH], R has just Ni dense open sets; also, R is not

pseudocompact. By Theorem 2.3 (necessity), there exists a free z-

ultrafilter Av on R such that every dense open set contains a member

of A"; hence no member of Ap can be nowhere dense. As observed at

the close of 1.2, this is equivalent (for the space R) to the first asser-

tion of the corollary.

We wish to show now that if q is any point of ßR — R and V is any

closed neighborhood of q in /3R, then at least one such point p lies in

V. Define/(x)=x for x£R, and choose a nonnegative continuous

function g on /3R equal to 1 at q and equal to 0 everywhere on /3R— V.

Next, define

*-/-(«|R);

then h is nonnegative, unbounded, and continuous (on R). Clearly,

for this h, the sets En of (2) are contained in V. So, then, is their

union, So (see (3)). According to (6), the point p constructed in the

ensuing proof lies in cLjr 50. Since V is closed, pE V. This concludes

the proof.
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Similarly, [CH] there exists a point p' of ßQ that is not in the

closure of any discrete subset of Q.

2.6. Corollary. [CH], There exists a countable space without iso-

lated points, one of whose points is not a limit point of any discrete set.

Proof. QVj{p} and QVJ{p'}, where p and p' are as above, are

such spaces.

3. Pseudocompact spaces. A space X is pseudocompact if and only

if every nonempty zero-set in ßX meets X. When, in contrast, every

point of ßX — X is contained in a zero-set of ßX disjoint from X,

then X is said to be realcompact [l, Chapter 8].

3.1. Theorem. Let S be a realcompact space, let HCZßS—S, and

define X = SKJH.
If X is pseudocompact, then H is dense in ßS — S.

Conversely, if H is dense in ßS — S, and if, in addition, S is locally

compact, then X is pseudocompact.

Proof. If H is not dense, there exists a nonempty open set U in

ßS — S disjoint from H. Write U= V — S, where Fis open in ßS. Pick

PEU. There exists a zero-set Z in ßS such that pEZEV. Since

VC\H= 0, we have ZC\H=0. Since 5 is realcompact, there is a

zero-set Z' in ßS such that pEZ'CßS-S. Then

p E Z r\ Z' E ißS - H - S) = ßS - X = ßX - X.

Therefore X is not pseudocompact.

Conversely, if X is not pseudocompact, there exists a continuous

function / on ßX whose zero-set is nonempty and is contained in

ßS — X(ZßS — S. If 5 is locally compact as well as realcompact, then

Z(/) has nonvoid interior in ßS — S [2, 3.1]. Since H does not meet

Z(/), H is not dense.

3.2. Examples. For H<ZßR — R, R'OH is pseudocompact if and

only if üis dense in/3R — R. For ZfCßN —N, NUífis pseudocompact

if and only if H is dense in /3N —N.

Local compactness, assumed in the second half of the theorem, is

critical. Let/(x) =x on the space Q, and let X denote the set of all

points of /3Q to which/ has a continuous extension. Clearly, X is not

pseudocompact. But the set H = X— Q is dense in ßQ — Q. For, con-

sider any point q of ßQ— Q and any closed neighborhood F of g in

ßQ. Then FHQ contains a bounded interval / of Q; and cLjq JQV.

Obviously, cl /is nonempty; and since/is bounded on /, cl J—JEH-

So H is dense.
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3.3. Let r denote the set of all points of j8R — R that are not in the

closure of any discrete subset of R, and let A denote the comple-

mentary subset of j3R — R.

Theorem. Both A and [CH] V are dense in ßR — R. Equivalently:

both RWA and [CH] RUr are pseudocompact spaces.

Proof. The equivalence has just been noted. Since any closed

neighborhood in (3R of a point of /3R —R contains an unbounded dis-

crete subset of R, RWA is dense. That [CH ] RUr is dense was estab-

lished in Theorem 2.5.
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