ENUMERATIONS FOR PERMUTATIONS IN
DIFFERENCE FORM

JOHN RIORDAN

1. Introduction. If (p1, p2, - - -, P») is a permutation of elements 1
to n, then (m, my, - - -, ma) with m;=p;—j (mod #) is the correspond-
ing difference form. Since p1+ - - - +p.=1424 - - - +=n, it follows
that my+m+ - - - +7,=0 (mod »); hence the difference forms apart
from order are partitions of kn, k=0, 1, - - - , n—1 with largest part
n—1 and at most n parts. Marshall Hall [1] has shown that every
such partition corresponds to at least one permutation. Here it is
shown that the number of these partitions is given by

W Prn=— S a0 7)

n din d

with summation over all divisors on 7 (including 1 and #) and ¢(%)
the Euler totient function.

2. A partition enumerator. It is convenient to determine the
enumerator for partitions with largest part ¢ and at most » parts by
use of a theorem of Pélya, as in [4]. Thus they are regarded as un-
ordered arrangements on a line of elements each of which may have
any of the values 0, 1, - - -, 7 (corresponding to a store enumerator
14+x+4+ - - - +x%) and with order equivalences for all operations of
the symmetric group on 7 elements. Then, if P,(x, ¢) is the enumer-
ator, by the theorem

(2) Pn(x,i)=S”(51,32,"‘,S,.), sk=1+xk+"'+x‘kr

with Sp(x1, %3, - - -, x.) the cycle index of the symmetric group,
which for present purposes may be taken as defined by

2 n
(3) Esn(xl) Xgy v vt xn)y" = exp(xly+ ng;— + P +xn.y;;+ . .) o
n=0

Writing
P(x,9) = 2 Pu(x, )y

=0
and using (2) and (3), it is found that
4) P(x,3) = 1/(1 = )1 —xy) - - - (1 — x'y)
a result which'is immediate otherwise. Since
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(1 = y)P(x, y) = (1 — x*1y) P(=, xy)
it follows from (4) that

1 — gitl | — git? 1 — xitn

2 an,i= ..
(22) @) =T T 1 — 2

a result given by P. A. MacMahon [2, p. 5], who has also noticed
[2, p. 66] the equivalent result, equation (2). By (2a)

Py(x,n — 1) = P,_y(x, n);
by (2), this corresponds to the interesting identity

(5) Sn(slm—l) ] sﬂ."—l) = Sﬁ—l(sl.m Tty sn—l.n)
with s;,;=1+x*+ - - - 4x%* Notice also that from (2a), on evaluat-
ing the indeterminate form,
2n—1
©) P,.(l,n—-l)~_—< )
n

Finally it may be noticed that the enumerator for compositions is
obtained from the theorem as -

) Ca(z,2) =(1+2+ -+ 29)n

since the group of equivalences consists solely of the identity (cycle
index x}).

3. Multisection of enumerators. The enumerator P,(x, n—1) gives
as coefficient of x™, m=0, 1, - - - | n(n—1), the number of partitions
of m into at most # parts and with largest part n—1. The partitions
corresponding to permutations in difference form are for only those
values of m which are zero or multiples of #. To pick out such terms
requires what DeMorgan [3] calls multisection of the series of terms
in the enumerator, which is accomplished by simple properties of the
roots of unity. Briefly if

ax) =a+ax+ -
and a is a primitive nth root of unity, then the ith n-sectional series
3;n(%) = 0% + gt + - - -

is given by

. (8) Gin(x) = n? i o~ Yia(aix).

=1
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Applied to the partition enumerator P.(x, n—1), (8) gives
) Pion(t,n—1)=n! 3”21 o YiP,(afx, n — 1)
and in particular
(10) Piw=Piu(l,n—1) = n! i a~ %P, (i, m — 1)
g1

is the sum of the numbers of partitions of all integers congruent to %,
modulo 7.

Equation (9) seems not to have much to offer, but equation (10)
does. First it is clear that the powers of @ may be classified according
to their period; there are ¢(d) powers of period d, and, if B, B; are
roots, each of period d, P,(81, n—1)=P,(B;, n—1). If 8=1 and
de=mn, then

ss(B) =1+ B+ - - - + préeD

=148+ -+ BHED)(1 4 g 4 . . . 4 Grd(eD)
and since 148+ - - - +89-1=0,
§ =0, dlk
(11) «(8) I,

=n dl k.

Hence, by (2)
(12) PuByn— 1) =Sa(0, - -+, m, 0, - ;- -0),  B=1,
the nonzero entries in S, occurring at positions jd, j=1, 2, - - -

If in (3) =0, |k, xx=x, d| k, then

2d
Esn(xly ] xn)y” = exp(x/d) (yd -l-y7+ . .)

n=0

(13) = (1 = y9=n
- Z (] -14 xd—l)yid.
=0 J
Hence

2¢e — 1
(14) P,8,n— 1) =( ), gd=1, de=n,
e

and by (10) with ¢=0,
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2¢e — 1
(1) Pn=wrZo@(T ), =
din €
the result stated in the introduction.
The P;,, may all be expressed in terms of the Py .. Thus for n=p,
a prime,

(14) Pip= Py, — 1, i=1,2,.---,p—1,
For n=2pgq, p and ¢ prime,
Pipy = Popg — Pop— Pog+ 1, il p, q,
(15) Pjp.oa = Po,pq — Po,y, i=12---,9—-1,
Pig.pa = Po,pg — Py, i=12..-,p—1,
For n=7p*,
(16) Pgige = Py g — Po ph-in, j<k

Finally it may be noticed that the corresponding composition
sums C;,, (defined as in (10)) all have the common value

(17) C.',n = n"“,

since Ca(a/, n—1)=0, j<n and C.(1, n—1)=n" Hence they are
equinumerous with fully point-labeled rooted trees.
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