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The following question has been raised by several authors: If X

and Y are two continua whose cartesian product admits a continuous

associative multiplication with identity, must X and Y both admit

such multiplications? We remark here, that a certain decomposition

space defined by Bing yields a negative answer.

Let B denote the space described in 8 of [l]. It is a certain upper

semicontinuous decomposition of 53 each of whose elements is an

arc or a point. It is shown in [l] that BXS1 is homeomorphic with

S3XSl. Now S3XSl admits the structure of a topological group.

Hence we need only show that B cannot admit the structure of a

topological semigroup with identity. We note first the following

Lemma. Let D and T be two compact connected topological semigroups

with identities. If DXT is topologically a manifold then D and T are

already Lie groups.

Using coordinatewise multiplication, we see that DXT is a semi-

group with identity. Then however, [3], it is well known that DXT

is already a group. Since DXT can then have only one idempotent

it is immediate that D has only one idempotent. But a compact semi-

group with a unique idempotent which is an identity must already

be a group, [2]. Hence D is a topological group and, being locally

connected and finite dimensional, is a Lie group. Likewise, T is al-

ready a Lie group.

Since BXS1 is a manifold, S3XS1, we see that were B to be a semi-

group with identity it would be a Lie group. Since B is not a manifold

the result follows.
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