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1. Introduction. By a Gaussian process we shall mean a triple

{X, (B, Xrm J where X=X(a, 6) is a set of real-valued functions defined

on an interval [a, b], (B is a Borel field of subsets of X containing all

sets of the form {xEX\x(ta) <a, t0E [a, b]} and Xm is a Gaussian

probability measure on ÖS determined by a covariance function r

and a mean function m (how r and m determine such a measure is

explained in [3, pp. 71-74]). The question of the equivalence or

perpendicularity of two such processes (i.e., the equivalence or per-

pendicularity of their measures) has recently received considerable

attention [5; 6; 7; 9]. It is known, for example, that a dichotomy

exists. Either two such processes are equivalent or they are perpen-

dicular (see [5]). Since a Gaussian probability measure is completely

determined by a covariance and a mean function, it would seem de-

sirable to give conditions for the equivalence (or perpendicularity)

of two such measures directly in terms of the corresponding covariance

and mean functions. Moreover, in the case of equivalence one would

like an explicit formula for the Radon-Nikodym derivative of one

measure with respect to the other. Several such results have been

obtained. Of particular interest to us is a recent theorem of T. S.

Pitcher (see [9, Theorem 2.3]).

Theorem 1 (Pitcher). Consider two separable Gaussian processes

on [a, b] with respective probability measures Xrm and Xr0 determined by

the same (continuous) covariance function r but with the first having

mean function m while the second has mean function identically zero.

Suppose that m is of the form m(t) =flr(t, s)dp(s) for some function p of

bounded variation on [a, b]. Then Xrm~Xro and1

(1.0) (d\rm/d\r0)(x) = exp (1/2) f  [2x(t) -m(l)]dp(l).

On the surface, this theorem appears to be of a very special nature,

first of all because m must be expressible in a certain way and secondly

because it applies only to processes with the same covariance func-

tion. However, for a certain rather wide class of Gaussian processes

we shall show that the restriction on m is a very simple and natural
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1 We use ^ between two measures to mean that the two measures are equivalent,

i.e., they are mutually absolutely continuous with respect to each other.

799



800 D. E. VARBERG [October

one. Moreover, for this class we shall remove the condition that the

two processes have the same covariance function by appealing to an

earlier theorem of the author [lO]. This will give us the main theorem

of §2 (Theorem 4).

In §3 we explore some of the consequences of Pitcher's Theorem in

connection with translations of Gaussian processes, obtaining a gener-

alization of the Cameron-Martin translation theorem for the Wiener

process [2]. The relation between the author's results and some of

Feldman is explored in §4.

2. Equivalence of Gaussian probability measures. We begin with

the definition of the class of probability measures with which we shall

mainly be concerned.

Definition 1. We say that XrmG2rc if \m is a Gaussian probability

measure on {C, B}2 determined by a covariance function r and a

mean function m satisfying the following conditions. First, r is tri-

angular, i.e.,

luis)vit),       s^l,
r(s, t) = \

XuiDvis),       s ^ t,

where

(A) «(a)èO,

(B) »(<)>0on [a, b],

(C) u" and v" exist and are continuous on [a, b],

(D) vit)u'it)-uit)v'ii)>0 on [a, b].

Secondly, we require that m' exist and be of bounded variation on

[a, b].
We next state a lemma which shows that, for the triangular co-

variance functions described in the above definition, the apparently

rather special form required for the mean function m in Pitcher's

Theorem becomes a simple regularity condition on m.

Lemma 1. Let r with factors u and v satisfy the conditions in Defini-

tion 1. Then the integral equation mit) =flr(t, s)dp(s) has a solution p

* Here C= C(a, b) denotes the set of all continuous real-valued functions on [a, b]

and B denotes the Borel field of subsets of C(a, b) generated by sets of the form

\xEC\x(li)<a, hE[a, b]}. It can be shown (see [4, pp. 401, 402]) that if r and m

satisfy the conditions of Definition 1 we always do obtain a measure \m on | C, B ),

i.e., the sample functions of the corresponding process may be assumed to be continu-

ous. As examples of processes with measures belonging to 9TÏ we mention the Wiener

(Brownian motion) process with covariance r(s, /)=<r2 min(i, t), <r2>0, and the

Ornstein-Uhlenbeck process with r(s, i) = a1 exp ( -ß | s -t | ), <rs>0, ß >0.
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of bounded variation on [a, b] if and only if

(1) m' exists and is of bounded variation on [a, b],

(2) m(a)=0if u(a) = 0.

Moreover, if these conditions are satisfied and if we define a function n

on [a, b] by

n(a) = m(a)/u(a)   if   u(a) 9* 0   and   n(a) = 0   if   u(a) = 0,

n(s) = [v(s)m'(s) - m(s)v'(s)]/[v(s)u'(s) - u(s)v'(s)] if a < s < b,

n(b) = 0;

then p(s) = —f'a[l/v(t)]dn(t) is a solution.

Proof. Suppose that there exists a function p of bounded variation

on [a, b] such that m(t)=flr(t, s)dp(s). Then

m(l) = v(t) I   u(s)dp(s) + u(t) j   v(s)dp(s)
J a J t

= — v(t)u(a)p(a)

- v(t) f p(s)u'(s)ds + u(t)v(b)p(b)
J a

- u(t) I   p(s)v'(s)ds.

m'(t) = - v'(t)u(a)p(a) - v(t)p(t)u'(t)

- »'M f p(s)u'(s)ds

+ u'(l)v(b)p(b) - u(t)p(t)v'(t)

- u'(t)  f p(s)v'(s)ds.

From (2.0), condition (2) of the lemma is an immediate consequence.

Moreover, using (2.1) together with the fact that u" and v" are con-

tinuous, we can easily show that condition (1) holds.

On the other hand, suppose that conditions (1) and (2) are satisfied

and let p be defined as in the lemma. Then

(2.0)

Thus

(2.1)



802 D. E. VARBERG [October

J\(t,s)dp(s) = -j  [rit,s)/vis)]dnis)

vit) f [uis)/vis)]dnis) - uit) j  dnis)= -»(

= - vit)[nis)uis)/vis)}

+ uit) nit)

= vit)nia)uia) /via)

+ vit) f nis)d[uis)/vis)}

/' ' vis)m'is) - mis)v'is)   vis)u'is) - uis)v'is)
-  -ds

.    vis)u'is) - uis)v'is)                v2is)

= i)(/)n(a)w(a)/»(a) + »(/) I   d[mis)/vis)]
7„

= »(/)w(a)w(a)/t>(a) + mit) — t)(/)w(a)/t(a)

= mit).

For later convenience, we observe that for any continuous func-

tion y

f y(t)dpit) = - J  [y(t)/v(t)]dn(t)
(2.2)

_n(a)y(a)      Ç * v(s)m'(s) - m(s)v'(s)   ry(t)l

v(a) Ja    v(s)u'(s) - u(s)v'(s)   lv(t)l

With this lemma we may now reinterpret Pitcher's Theorem as

follows.

Theorem 2. (Same covariance, different means.) Let Arm and Xro be

two Gaussian probability measures on {C, B} which belong to 9TC (see

Definition 1) with common covariance function r given by

(u(s)v(t),       s ^ t,

v(s),       i^i.

Suppose further that m(a) = 0 if u(a) = 0. Then Xrm^Aro and

d\rm

,    ,       (u(s)v(
r(s, t) = <

\u(t)v(

dXrO
(2.3)

(x)

(r,       r,   / x  ,    l   C »W»'W -m(t)v'(t) J2x(t) - m(t)l\
— exp < Di + D2x(a) -\-I-d  -   >

F\ 2 Ja    v(t)u'(t) - u(t)v'(l)    L        v(i)        if



Di= <
\-m2(a)/[2u(a)v(
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where

if u(a) = 0,

2(a)/[2u(a)v(a)]        if u(a) 9* 0

and

(0 if u(a) = 0,
"2 — \

\m(a)/v(a)        if u(a) 9* 0.

Proof. Combining Lemma 1 with Theorem 1, we see that d\rm/d\rt>

does exist and moreover, if we represent m(t) as m(t) = flr(t, s)dp(s),

then (d\rm/d\r0)(x) =exp(l/2)fba[2x(t)-m(t)]dp(t). But by (2.2) the

latter is equal to

1   (n(a)[2x(a) — m(a)]

CXP 7 I vjd]

Ç » v(s)m'(s) - m(s)v'(s)    V2x(t) - m(t)l |

Ja    v(s)u'(s) - u(s)v'(s)     I       v(t)        i )

and this reduces to the right side of (2.3).

For convenience, we next state the earlier theorem of the author

which was referred to in the introduction (see [lO] for a statement

and proof of this theorem in slightly different notation).

Theorem 3. (Different covariances, same mean.) Let \0 and Xr0 be

two Gaussian probability measures on {C, B} which belong to 3TC (see

Definition 1) with respective covariance functions p and r given by

ld(s)<b(t),    s^t, (u(s)v(t),    s = t,
p(s, t) = \ r(s, t) =  <

\8(t)<b(s),   s = t, \u(l)v(s),    s è t.

Then Xpo~Xro if and only if the following conditions hold:
(A) v(t)u'(t)-u(t)v'(t)=d>(t)d'(t)-8(t)<p'(t) on [a, b],

(B) u(a) and 0(a) are either both zero or both nonzero. Moreover, if

these conditions are satisfied

dKo . .
(x)

dXr

(2.4)

» v(t)4>'(t) - <¡>(t)v'(t) d r x2(t)

v(t)u'(t) - u(t)v'(t)    \_4>(t)v(t).

where

= Ci exp <^ [1/2]   CiX2(a) + |- d   -   >
I L Ja      V(t)u'(t)   - U(t)v'(t)       l<b(t)v(t)]f
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m   ({[tiaWbMtibWa)]}1'2       ifOia) = 0,

t{ [uia)vib)]/[eia)<t>ib)]}1/2       */ Bia) * 0,

(0 «yfl(o)-o,

\[<t>ia)0ia) - uia)via)]/[via)<pia)eia)uia)] if Bia) 5* 0.

We proceed to the main theorem of this section.

Theorem 4. iDifferent covariances, different means.) Let \pli and

Xm be two Gaussian probability measures on {C, B} which belong to

9TC isee Definition 1) with respective covariance functions given by

(8(s)<p(t),    s^l, (uis)vit),    s St,
P(s, i) = "S r(s> t) = \

\dit)4>is),   set, UiDvis),    s g; t.

Then XpM~X,m if and only if the following conditions hold :

(A) vit)u'it)-uit)v'it)=<pit)0'it)-6it)<p'it)on [a, b],

(B) w(a) and Bia) are either both zero or both nonzero and if «(a)

=0(a) = 0, then w(a) =ju(a).

Moreover, if these conditions hold

(2.5) (</XPM/dXrm)(x) = (¿Xpo/áXro)(x - it) • (</Xr,M_m/áXr0)(x - m)

where the expressions on the right are given by formulas (2.4) and (2.3)

respectively.

Proof. Suppose that XPM'~Xrm. Condition (A) follows as in the proof

of Theorem 3.3 We omit the details. To see condition (B), we note

that if 6ia) = 0, then l=XPM{xGC|x(a)=M(a)} =X™{xGC|x(a) =/*(<*)}
which implies that uia) = mia) and «(a) = 0. Similarly if n(a) = 0, then

pia) = mia) and 0(a) = 0.

Conversely, suppose that (A) and (B) hold. We may write

id\fll/d\Tm) (x) = (¿XPM/áXrM) (x) • (¿XrM/a*Xrm) (x) provided both deriva-

tives on the right exist (see [8, p. 133]). But Pitcher has shown (see

[9, Lemma l.l]) that dihTJd\rm exists if and only if ¿Xr,„_m/¿X,-o exists

and that

(2.6) id\Tll/d\m)ix) = (áXr.„-m/dXro)(x - m)

and the latter derivative exists by Theorem 2. Further, it is easy to

show that if ¿Xpo/dXro exists, then so does d\„Jd\Ta and that

(a*XPJI/dXr„)(x) = (dXpo/aTwo)(x—p). Now, however, Theorem 3 insures

the existence of the latter derivative. This shows us that XP(I is ab-

* For this proof see [10], especially §2. The proof depends on a theorem of Baxter

and, in fact, for our present theorem we need Baxter's theorem in its general form

(nonzero mean) rather than a restricted version stated in [10]. However, the general

form is available (see Baxter's original paper [1]).
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solutely continuous with respect to Xrm and that the Radon-Nikodym

derivative has the form given in (2.5). That Xrm is absolutely continu-

ous with respect to Xpp follows by symmetry. Thus X,)f,~X,.m.

3. Translation theorems for Gaussian processes. Cameron, Martin

(and others) have obtained an extensive transformation theory for

the Wiener process. Their first result [2] was a translation theorem

which we aim to generalize to a broad class of Gaussian processes.

Our first theorem in this direction is as follows.

Theorem 5.4 Let {X, (8>, Xm} be a separable Gaussian process on

[a, b] with continuous covariance function r and mean function mEL2.

Let xo(t) =f\r(t, s)dq(s) where q is of bounded variation on [a, b}. Then

for all ((B) measurable functions F,

(2.7) E"n{F(x)} = E™\F(x + x0)J(x)}*

where

J(x) = exp j- (1/2) f [2x(t) - 2m(t) + x0(l)]dq(t)\ .

Proof. One may verify that for all (03) measurable functions F,

Erm{F(x)}=Er-m-xo{F(x+Xo)}. On the other hand, by (2.6) and

Theorem 1,

P'.—ofp(x +Xo)} = E™[F(x + xo)-(d\r,-Xa/d\r0)(x -m)}.

But using (1.0), we see that (dKr,-xJd\ro)(x — m) = J(x) and this com-

pletes the proof.

Corollary 1. Let {C, B, Xrm} be a Gaussian process on [a, b] with

XrmÉE3TC (see Definition 1), r being of the form

s g /,_   (u(s)v(t),

"   U(t)v(s),
r(s, .

S — t.

Let xo be any function having a derivative of bounded variation on [a, b]

and such thai xz(a)=0 if u(a) = 0. Then for all (B) measurable func-

tions F,

(2.8) E'm{ F(x)} = £™{ F(x + x0)J(x)}

where

4 A weaker version of this result and its corollaries was obtained in the author's

doctoral dissertation written at the University of Minnesota under the direction of

Professor Robert H. Cameron [11].

• E"* denotes expected value on a Gaussian process with covariance function r and

mean function m.
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J(x) = exp <Di + Di[x(a) — m(a)]

(2.9)
1   rh »(/)*o (0 - Xo(t)v'(t)    r2x(t) - 2m(t) + xo(t)l\

'    2 Ja       V(t)u'(t)  - ll(t)v'(t)        L ~V¡¿) J Í

and

=   Í0 if u(a) = 0,

\ — x0(a)/[2u(a)v(a)]       if u(a) 9* 0,

D2 = \
( — Xo(a)/v(a,

if u(a) = 0,

(a)/v(a)       if u(a) 9* 0.

Proof. We apply Theorem 5 noting that xa is of the proper form

(see Lemma 1). From the proof of Theorem 5, we observe that J(x)

= (d\r,-.xJdkTo)(x — m). But this derivative may be evaluated by the

use of formula (2.3) which gives (2.9).

Corollary 2. (Cameron-Martin translation theorem for the Wiener

process.)6 Let { C, B, Xr0} be the Wiener process on [O, l] with

(s>
r(s, t) = min(j, /) =  <

set,

s è t.

Let Xç, be any function having a derivative of bounded variation on [O, 1 ]

and such that x<¡(0)=0. Then for all (B) measurable functions F,

Er0\F(x)}

(2.10)

= E' ¡F(x + xo) expï- j x¿(t)dx(t)   — (1/2) f [*0'(0N<1}

Proof. We apply Corollary 1, noting that u(t)=t, v(t)^l so that

Di = 0, D2 = 0, v(t)u'(t)-u(t)v'(t) = l, which gives the result.

4. Relation of Theorem 3 to a Theorem of Feldman.7 It is interest-

ing to explore the connection between the results of this paper, espe-

cially Theorem 3, and some results of similar type which appear in

a recent paper of Feldman [6]. Feldman considers stationary Gaus-

6 This is not quite the Cameron-Martin theorem since in that theorem the space is

the set of all continuous functions vanishing at the origin rather than our C(0, 1 ). Also

the Borel field B has been completed with respect to the measure X,0. Note finally that

Cameron and Martin consider the process with covariance r(s,f) = ( 1/2) min(i, /) which

puts an extra factor of 2 in the exponential in formula (2.10). All of these modifications

could easily be made in Corollary 2.

7 The referee suggested that this comparison be made.
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sian processes (covariance function ris, t)=ris—t)) with mean func-

tion identically 0. It is well known that such covariance functions

can be written as Fourier transforms, i.e., r(0) =/J°„ exp( — iBx)dFix).

Consider measures Xr0 and Xp0 determined by two such covariance

functions and suppose moreover that one of them, say r, is the Fourier

transform of dx/(l+x2)", i.e., r(0) = cf1„ exp(-í0x) •(l+x2)-udx,

where u is an integer g 1 and c is a positive constant. Then Feldman

gives necessary and sufficient conditions for the equivalence of Xr0

and Xpo in terms of conditions on certain Fourier transforms which are

related to r and p (main theorem of [6]).

The question arises as to whether Feldman's Theorem and Theo-

rem 3 overlap. As a matter of fact, they do, but only in the case of

certain Ornstein Uhlenbeck processes. It is not hard to show that the

covariance functions which are both triangular (so that Theorem 3

applies) and of stationary type (so that Feldman's Theorem applies)

are those which can be written in the form ris, /)=r(s —¿) where

r(0) = ff2exp(-ß|0|) = OSo-2/7r-) f.". exp(-iÖx) • iß2+x2)~1dx, a2>0,

ß>0. Choosing ß=l makes r of the right type for the special covari-

ance function of Feldman's Theorem. The results which are then ob-

tained are consistent with those obtained in the author's earlier paper

(see [10, Example 3]) where Ornstein Uhlenbeck processes are in-

vestigated in detail by means of what is Theorem 3 in the present

paper.
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