ISOMETRIC IMMERSIONS WHICH PRESERVE CURVATURE OPERATORS

BARRETT O'NEILL

The curvature tensor of a Riemannian manifold M can be expressed by a function which assigns to each pair of vectors $x, y \in M_m$ (tangent space to M at m) a skew-symmetric linear operator R_{xy} on M_m [1]. Call R_{xy} the curvature operator of x, y. Let $j \colon M^d \to \overline{M}^{d+1}$ be an isometric immersion. If j is totally geodesic, then j preserves curvature operators, that is, if x, y, $z \in M_m$, then $dj(R_{xy}(z)) = \overline{R}_{dj(x),dj(y)}(dj(z))$. The converse is generally false. We are going to consider the character of immersions as above which preserve curvature operators. The simplest example is an arbitrary isometric immersion of R^d in R^{d+1} . In particular we show that if the domain M^d of j is complete and has positive curvature then the converse above holds, that is, if j preserves curvature operators, then j is totally geodesic.

1. General case. Note that $j \colon M^d \to \overline{M}^{d+1}$ preserves curvature operators if and only if (a) j preserves Riemannian curvature, i.e. $\overline{K}(dj(\pi)) = K(\pi)$ for all 2-planes π tangent to M, and (b) if $z \in \overline{M}_{j(m)}$ is orthogonal to $dj(M_m)$, then $\overline{R}_{dj(x),dj(y)}(z) = 0$ for all $x, y \in M_m$. The proof is elementary, and depends on the fact that the codimension of M in \overline{M} is one.

THEOREM 1. Let $j: M^d \to \overline{M}^{d+1}$ be an isometric immersion which preserves curvature operators, and let M be complete. Then the open set N of nongeodesic points of M rel. j is foliated by complete (d-1)-dimensional submanifolds which are totally geodesic rel. j.

PROOF. Since j preserves Riemannian curvature, at each point of M there is at most one curvature direction with nonzero principal curvature. Thus on the set N of nongeodesic points, the directions of zero normal curvature constitute a differentiable field \mathcal{O} of (d-1)-planes. We will integrate \mathcal{O} to obtain the required foliation. (The theorem holds trivially when N is empty.)

Each point of N has a neighborhood U on which there is a unit normal vector field E_{d+1} rel. j and a frame field $E=(E_1, \cdots, E_d)$ whose first vector is in the curvature direction with principal curvature $\kappa_1 \neq 0$. From the frame field E one obtains on U the dual-base forms ω_i , the Riemannian connection forms ϕ_{ij} , and curvature forms Φ_{ij} of M, $1 \leq i$, $j \leq d$. Enlarging E by adding E_{d+1} to it, we get the Codazzi forms σ_i , $1 \leq i \leq d$, and curvature forms $\overline{\Phi}_{rs}$, $1 \leq r$, $s \leq d+1$,

Received by the editors July 11, 1961.

of \overline{M} . Dropping the differential map of j from the notation, we can write $\overline{R}_{E_iE_j}(E_{d+1}) = -\sum_k \overline{\Phi}_{k,d+1}(E_i, E_j)E_k$. Thus by (b) above, we have $\overline{\Phi}_{k,d+1} = 0$ on U. Furthermore, $\sigma_1 = \kappa_1\omega_1 \neq 0$, and $\sigma_i = 0$ if i > 1. Thus the Codazzi equations $d\sigma_i = -\sum_k \phi_{ik} \wedge \sigma_k + \overline{\Phi}_{d+1,i}$ reduce to $d\sigma_1 = 0$ and $\phi_{i1} \wedge \sigma_1 = 0$. Since σ_1 annihilates the planes of \mathcal{O} , $d\sigma_1 = 0$ implies \mathcal{O} is integrable. The other equations imply that the forms ϕ_{i1} are zero on vectors tangent to a leaf L of \mathcal{O} . But these forms, $1 < i \leq d$, are the Codazzi forms for L in M, so each leaf L is totally geodesic in M—and hence also in \overline{M} , i.e. rel. j.

Now we show that the leaves L are complete by showing that geodesics of L are infinitely extendible. Suppose the contrary, i.e. that there is a maximal geodesic α of a leaf L which is defined only on a bounded open interval (a, b). Since M is complete, α is infinitely extendible as a geodesic of M. Since L is totally geodesic, as long as this extension $\tilde{\alpha}$ remains in N, it is a geodesic of L. So the limit points $\tilde{\alpha}(a)$ and $\tilde{\alpha}(b)$ of α are not in N. We will contradict this by showing that κ_1 is zero at neither of these points. We can assume that the geodesic segment α (but not its limit points) lies in the domain of fields E and E_{d+1} as above, with the further properties that α is an integral curve of E_2 and that E is parallel on α . In fact, once E is properly defined on α , one can extend over a neighborhood of α in Mby first extending over a neighborhood in the leaf L, keeping E_1 perpendicular to L, then extending over the full neighborhood, keeping E_1 always in the κ_1 curvature direction. (Strictly speaking, one passes to a suitable covering manifold if α crosses itself.)

From the first structural equation, we deduce $[E_1, E_2] = \sum \phi_{i2}(E_1)E_i$. Applying the form $d\sigma_1 = 0$ to the fields E_1 , E_2 gives $E_2(\kappa_1) = -\kappa_1\phi_{12}(E_1)$. Setting $k = \kappa_1 \circ \alpha$, $f = \phi_{12}(E_1) \circ \alpha$, we write this equation as

$$(1) k' = -kf.$$

Applying the second structural equation to the fields E_1 , E_2 and simplifying, using the facts above, we get $E_2(\phi_{12}(E_1)) = -(\phi_{12}(E_1))^2 - \Phi_{12}(E_1, E_2)$. Setting $F = \Phi_{12}(E_1, E_2) \circ \alpha$ yields

$$(2) f' = -f^2 - F.$$

Our assumption that L is not complete has led to the conclusion that k(t) approaches zero as t approaches either a or b. The differential equations (1) and (2) contradict this. In fact, solving (1) explicitly, we deduce that as $t \rightarrow b$, $\limsup f = +\infty$. This contradicts (2) which says, since F is bounded below on (a, b), that when f is large enough its slope is negative. The argument when $t \rightarrow a$ is similar, so the proof is complete.

A scheme similar to that above was used by Chern and Lashot in [3, Lemma 2].

THEOREM 2. Suppose M^d $(d \ge 2)$ is complete and has Riemannian curvature K > 0. Then every isometric immersion $j: M^d \to \overline{M}^{d+1}$ which preserves curvature operators is totally geodesic.

PROOF. Suppose there is a nongeodesic point, that is (in the notation of the previous proof) N is not empty. Then a geodesic α as in that proof has domain the whole real line. Thus we can arrange for the function $f = \phi_{12}(E_1)$ o α to be defined on the whole real line, and f satisfies the differential equation (2) $f' = -f^2 - F$. But this is impossible when K > 0, since then F > 0.

This is not a local result—it fails if M is not required to be complete.

2. Constant curvature case. If \overline{M}^{d+1} has constant curvature, then its curvature operators have the property that $\overline{R}_{xy}(z)=0$ if z is perpendicular to x and y. (Converse, §177 of [2].) Thus by the first remark of the previous section, if M^d and \overline{M}^{d+1} have the same constant curvature, then every isometric immersion $j\colon M^d\to \overline{M}^{d+1}$ preserves curvature operators. We consider the character of j and M^d when \overline{M}^{d+1} is specialized to be a sphere $S^{d+1}(C)$, Euclidean space R^{d+1} , or hyperbolic space $Q^{d+1}(C)$, where C is curvature of appropriate sign. From Theorem 2 we get: if M^d is complete and has constant curvature C>0, then M^d can be immersed in $S^{d+1}(C)$ if and only if M^d is isometric to $S^d(C)$. Any such immersion is an imbedding onto a great d-sphere.

In the case C=0, Hartman and Nirenberg [4] have proved: a complete flat manifold M^d can be immersed in R^{d+1} if and only if M^d is isometric to either R^d or $S^1(r) \times R^{d-1}$. Any such immersion is as a cylinder in R^{d+1} .

This can be proved by applying Theorem 1 to both $j: M^d \to R^{d+1}$ and $j \circ \pi: R^d \to R^{d+1}$, where $\pi: R^d \to M^d$ is the universal covering of M^d . The special character of disjoint, totally geodesic hypersurfaces in R^d allows us to extend the foliation of the set N in R^d to a foliation of all of R^d by parallel (d-1)-planes.

This general scheme fails in the negative curvature case, since disjoint, totally geodesic hypersurfaces in $Q^d(C)$ can have more complicated arrangements. One can exhibit surfaces with curvature C < 0 in $Q^3(C)$ with arbitrary first Betti number. However the Euclidean result can be extended topologically to the negative curvature case as follows:

THEOREM 3. Let M^d be a complete manifold with constant negative curvature C. If M^d can be isometrically immersed in $Q^{d+1}(C)$, then $H^i(M^d) = 0$ for $i \ge 2$.

(Here H denotes Čech cohomology with arbitrary coefficients.)

PROOF. From such an immersion j we get a decomposition of M as in Theorem 1. Denote the components of N by N_{α} , the components of M-N by F_{β} . Each leaf L of N is complete and totally geodesic rel. j, hence isometric to $Q^{d-1} = Q^{d-1}(C)$. The immersion j is one-to-one on components F_{β} also. Let $\pi: Q^d \to M^d$ be the universal covering. Then we can derive

- (1) If a subset A of M can be lifted into Q^d , so can the union of those sets L and F_{β} which meet A.
- (2) There is a number $\epsilon > 0$ such that if B, C, D are disjoint totally geodesic hypersurfaces in Q^d which meet an ϵ -neighborhood, then B, C, D are linearly ordered, i.e. some one separates the other two in Q^d .
- (3) Each F_{β} is either a totally geodesic Q^{d-1} or (if its interior is not empty) a manifold with boundary B_{β} , where B_{β} is a union of totally geodesic sets Q^{d-1} , each of which is disjoint from the closure of the others. In particular each F_{β} is contractible.

By a theorem of Ricci (§107, [2]) the orthogonal trajectories of the leaves of an N_{α} give isometries of the leaves. If N is dense in M it follows (much as in the Euclidean case) that M is diffeomorphic to either R^d or $S^1 \times R^{d-1}$. Excluding this case we have

(4) The boundary of each N_{α} is either a single totally geodesic Q^{d-1} or two disjoint ones, and the closure \overline{N}_{α} of N_{α} is contractible.

Consider the covering $\mathfrak C$ of M by all sets N_{α} and F_{β} . This is a closed covering by homologically trivial sets. Furthermore, any intersection of three elements of $\mathfrak C$ is empty, and the intersection of any two consists of at most two disjoint sets Q^{d-1} . Suppose $\mathfrak C$ is locally finite, e.g. M-N only a finite number of components. Then by a well-known theorem, the cohomology of M is isomorphic to the cohomology of the nerve of $\mathfrak C$. Since this nerve has dimension 1 the result follows. If $\mathfrak C$ is not locally finite we can alter it, retaining its essential properties, so as to get local finiteness. We omit the details of the proof. Roughly speaking, if $\mathfrak C$ is not locally finite at a point p, then p lies in a "limit face" Q_1 of an element, say \overline{N}_{α} , of $\mathfrak C$. Choose $N_{\beta} \neq N_{\alpha}$ sufficiently near Q_1 and let Q_2 be the face of N_{β} nearest Q_1 . Using (1) and (2) we can define G to be the union of Q_1 , Q_2 , and the elements of $\mathfrak C$ between Q_1 and Q_2 . Finally, replace these elements by G in $\mathfrak C$. Iteration of this operation eliminates all limit faces.

In general the complexity of the decomposition of M given by

Theorem 1 is measured by the identification space M^* whose elements are the leaves of N and the components of M-N. If M^* is metrizable, it can be shown to have inductive dimension 1. In this case the argument above can be replaced by an application of the Vietoris mapping theorem.

BIBLIOGRAPHY

- 1. W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428-443.
- 2. E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1951.
- 3. S. Chern and R. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306-318.
- 4. P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.

University of California, Los Angeles

ON THE EMBEDDABILITY OF THE REAL PROJECTIVE SPACES¹

MARK MAHOWALD²

In a paper of the same title, Massey [4] proved that if $2^{k-1}+2^{k-2}-1 \le n < 2^k$ then P_n cannot be differentiably embedded in R^{2^k} . By using the technique of Massey in a different way we can prove the following theorem which clearly includes Massey's.

THEOREM. If $2^{k-1} < n < 2^k$ then P_n cannot be embedded differentiably in Euclidean space of dimension 2^k .

Besides the result of Massey, the main result in this direction is if $2^{k-1} < n < 2^k$ then P_n cannot be embedded differentiably in $R^{2^{k-1}}$. Our result yields, in particular, that for P_{2^k+1} , the embedding in $R^{2^{k+1}+1}$ given by Hopf and James [1] is the best possible.

The following information from [3;4] will be needed. Let M be a n-manifold differentiably embedded in R^{n+k+1} ; and let $p:E \rightarrow M$ denote the bundle of unit normal vectors. Then there exist subalgebras $A^*(E, Z) \subset H^*(E, Z)$ and $A^*(E, Z_2) \subset H^*(E, Z_2)$ which satisfy the following conditions:

- 1. $A^{0}(E, G) = H^{0}(E, G)$,
- 2. $H^{q}(E, G) = A^{q}(E, G) + p^{*}(H^{q}(B, G)) (0 < q < n + k),$
- 3. $A^{q}(E, G) = 0, q \ge n + k$

Received by the editors October 2, 1961.

- ¹ Sponsored by the U. S. Army Research Office (Durham).
- ² The referee has informed me that the result of this paper has been obtained independently by Mr. J. P. Levine in his thesis at Princeton University.