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The curvature tensor of a Riemannian manifold M can be expressed

by a function which assigns to each pair of vectors x, yEMm (tangent

space to M at m) a skew-symmetric linear operator Rxy on Mm [l].

Call Rxy the curvature operator of x, y. Let j: Md—>Md+1 be an iso-

metric immersion. If j is totally geodesic, then j preserves curvature

operators, that is, if x, y, zEMm, then djiRxyiz)) = Rdnx),dj(y)idjiz)).

The converse is generally false. We are going to consider the char-

acter of immersions as above which preserve curvature operators.

The simplest example is an arbitrary isometric immersion of Rd in

Rd+1. In particular we show that if the domain Md of j is complete and

has positive curvature then the converse above holds, that is, if j

preserves curvature operators, then j is totally geodesic.

1. General case. Note that/: Md—>Md+1 preserves curvature oper-

ators if and only if (a) j preserves Riemannian curvature, i.e.

K(dj(ir))=K(ir) for all 2-planes ir tangent to M, and (b) if zE~Mj(m)

is orthogonal to dj(Mm), then 7cjj(I),#(„)(z) = 0 for all x, yEMm. The

proof is elementary, and depends on the fact that the codimension

of M in M is one.

Theorem 1. Let j: Md-+MdJrl be an isometric immersion which pre-

serves curvature operators, and let M be complete. Then the open set N

of nongeodesic points of M rel. j is foliated by complete (d—^-dimen-

sional submanifolds which are totally geodesic rel. j.

Proof. Since j preserves Riemannian curvature, at each point of

M there is at most one curvature direction with nonzero principal

curvature. Thus on the set N of nongeodesic points, the directions of

zero normal curvature constitute a differentiable field (P of (d — 1)-

planes. We will integrate (P to obtain the required foliation. (The

theorem holds trivially when N is empty.)

Each point of N has a neighborhood U on which there is a unit

normal vector field Ed+i rel. j and a frame field E = (Ex, ■ ■ ■ , Ed)

whose first vector is in the curvature direction with principal curva-

ture Kit^O. From the frame field E one obtains on U the dual-base

forms «i, the Riemannian connection forms 0,-y, and curvature forms

i>t;- of M, lui, júd. Enlarging E by adding Ed+i to it, we get the

Codazzi forms o\-, l^i^d, and curvature forms $„, l^r, s^d+l,
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of M. Dropping the differential map of j from the notation, we can

write R.BiEj(Ed+i) = — X* $k,d+i(Ei, E,)Ek. Thus by (b) above, we

have $k,d+\ = 0 on U. Furthermore, o'i = fCiWi?i0, and c¿ = 0 if i>l.

Thus the Codazzi equations ¿o%= — 2W,ifcA0'*+<ï><i+i..' reduce to

doi = 0 and <t>nA<ri = 0. Since o"i annihilates the planes of (P, ¿o-i = 0

implies (P is integrable. The other equations imply that the forms

<pn are zero on vectors tangent to a leaf L of (P. But these forms,

l<t'|¿, are the Codazzi forms for L in M, so each leaf L is totally

geodesic in M—and hence also in M, i.e. rel. j.

Now we show that the leaves L are complete by showing that geo-

desies of L are infinitely extendible. Suppose the contrary, i.e. that

there is a maximal geodesic a of a leaf L which is defined only on a

bounded open interval (a, b). Since M is complete, a is infinitely ex-

tendible as a geodesic of M. Since L is totally geodesic, as long as this

extension à remains in N, it is a geodesic of L. So the limit points

à(a) and à(b) of a are not in N. We will contradict this by showing

that Ki is zero at neither of these points. We can assume that the

geodesic segment a (but not its limit points) lies in the domain of

fields E and £<¡+i as above, with the further properties that a is an

integral curve of E2 and that E is parallel on a. In fact, once E is

properly defined on a, one can extend over a neighborhood of a in M

by first extending over a neighborhood in the leaf L, keeping Ei

perpendicular to L, then extending over the full neighborhood, keep-

ing Ei always in the Ki curvature direction. (Strictly speaking, one

passes to a suitable covering manifold if a crosses itself.)

From the first structural equation, we deduce [Ei, E2]= 2^,<t>i2(Ei)Ei.

Applying the form dai = 0 to the fields Ei, E2 gives E2(ki) = — Kicpii(Ei).

Setting k = Ki o a, f = d>u(Ei) o a, we write this equation as

(1) k' = - kf.

Applying the second structural equation to the fields £1, E2 and sim-

plifying, using the facts above, we get E2(d>i2(Ei)) = — (<pi2(Ei))2

—&n(Ei, E2). Setting F = $u(Ei, E2) o a yields

(2) f'=-f-F.

Our assumption that L is not complete has led to the conclusion that

k(t) approaches zero as / approaches either a or b. The differential

equations (1) and (2) contradict this. In fact, solving (1) explicitly,

we deduce that as t—»0, lim sup/= + °°. This contradicts (2) which

says, since F is bounded below on (a, b), that when / is large enough

its slope is negative. The argument when 1—»o is similar, so the proof

is complete.
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A scheme similar to that above was used by Chern and Lashot

in [3, Lemma 2].

Theorem 2. Suppose Md (de2) is complete and has Riemannian

curvature K>0. Then every isometric immersion j: Md-^Md+1 which

preserves curvature operators is totally geodesic.

Proof. Suppose there is a nongeodesic point, that is (in the nota-

tion of the previous proof) N is not empty. Then a geodesic a as in

that proof has domain the whole real line. Thus we can arrange for

the function/=0i2(£i) o a to be defined on the whole real line, and/

satisfies the differential equation (2)/'= —ß — F. But this is impossi-

ble when K>0, since then F>0.

This is not a local result—it fails if M is not required to be com-

plete.

2. Constant curvature case. If Md+i has constant curvature, then

its curvature operators have the property that Rxviz) — 0 if z is per-

pendicular to x and y. (Converse, §177 of [2].) Thus by the first

remark of the previous section, if Md and Md+1 have the same con-

stant curvature, then every isometric immersion j: Md—*Md+1 pre-

serves curvature operators. We consider the character of j and Md

when Md+1 is specialized to be a sphere Sd+1iC), Euclidean space

Rd¥1, or hyperbolic space Qd+1iQ, where C is curvature of appropriate

sign. From Theorem 2 we get : if Md is complete and has constant curva-

ture C>0, then Md can be immersed in Sd+1iC) if and only if Md is

isometric to SdiC). Any such immersion is an imbedding onto a great

d-sphere.

In the case C=0, Hartman and Nirenberg [4] have proved: a com-

plete flat manifold Md can be immersed in Rd+1 if and only if Md is

isometric to either Rd or S1^) X7?d_1. Any such immersion is as a cylin-

der in Rd+1.

This can be proved by applying Theorem 1 to both j: Md—>Rd+1

and j o ir: Rd—*Rd+1, where ir:Rd-^Md is the universal covering of

Md. The special character of disjoint, totally geodesic hypersurfaces

in Rd allows us to extend the foliation of the set N in Rd to a foliation

of all of Rd by parallel id—I)-planes.

This general scheme fails in the negative curvature case, since dis-

joint, totally geodesic hypersurfaces in QdiC) can have more compli-

cated arrangements. One can exhibit surfaces with curvature C<0

in Q*iC) with arbitrary first Betti number. However the Euclidean

result can be extended topologically to the negative curvature case

as follows:
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Theorem 3. Let Md be a complete manifold with constant negative

curvature C. If Md can be isometrically immersed in Qd+1(C), then

Hi(Md) = 0fori = 2.

(Here H denotes Cech cohomology with arbitrary coefficients.)

Proof. From such an immersion j we get a decomposition of M as

in Theorem 1. Denote the components of N by Na, the components

of M — N by Fß. Each leaf L of N is complete and totally geodesic

rel. j, hence isometric to Qd~l = Qd~l(C). The immersion j is one-to-

one on components Fß also. Let w: Qd^>Md be the universal covering.

Then we can derive

(1) If a subset A oí M can be lifted into Qd, so can the union of

those sets L and Fß which meet A.

(2) There is a number e>0 such that if B, C, D are disjoint totally

geodesic hy persurf aces in Qd which meet an e-neighborhood, then

B, C, D are linearly ordered, i.e. some one separates the other two

in Q".
(3) Each Fß is either a totally geodesic Qd~l or (if its interior is

not empty) a manifold with boundary Bß, where Bß is a union of

totally geodesic sets Qd~l, each of which is disjoint from the closure

of the others. In particular each Fß is contractible.

By a theorem of Ricci (§107, [2]) the orthogonal trajectories of

the leaves of an Na give isometries of the leaves. If N is dense in M

it follows (much as in the Euclidean case) that M is diffeomorphic

to either Rd or SlXRd~l. Excluding this case we have

(4) The boundary of each Na is either a single totally geodesic

Qd~l or two disjoint ones, and the closure Na of Na is contractible.

Consider the covering C of M by all sets Na and Fß. This is a closed

covering by homologically trivial sets. Furthermore, any intersection

of three elements of C is empty, and the intersection of any two con-

sists of at most two disjoint sets Qd~l. Suppose C is locally finite, e.g.

M — N only a finite number of components. Then by a well-known

theorem, the cohomology of M is isomorphic to the cohomology of the

nerve of C. Since this nerve has dimension 1 the result follows. If C

is not locally finite we can alter it, retaining its essential properties,

so as to get local finiteness. We omit the details of the proof. Roughly

speaking, if Q is not locally finite at a point p, then p lies in a "limit

face" Qi of an element, say Na, of C. Choose Nß9*Na sufficiently near

Ci and let Q2 be the face of Nß nearest 0> Using (1) and (2) we can

define G to be the union of Qi, Q2, and the elements of 6 between Qi

and Q2. Finally, replace these elements by G in 6. Iteration of this

operation eliminates all limit faces.

In general the complexity of the decomposition of M given by
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Theorem 1 is measured by the identification space M* whose ele-

ments are the leaves of N and the components of M—N. If M* is

metrizable, it can be shown to have inductive dimension 1. In this

case the argument above can be replaced by an application of the

Vietoris mapping theorem.
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ON THE EMBEDDABILITY OF THE REAL
PROJECTIVE SPACES1

MARK mahowald2

In a paper of the same title, Massey [4] proved that if 2*-1 + 2*-'

— l=n<2* then Pn cannot be differentiably embedded in 7?2 . By

using the technique of Massey in a different way we can prove the

following theorem which clearly includes Massey's.

Theorem. If 2*_1<»<2* then Pn cannot be embedded differentiably
in Euclidean space of dimension 2k.

Besides the result of Massey, the main result in this direction is if

2*~1<n<2* then Pn cannot be embedded differentiably in 7?2*-1.

Our result yields, in particular, that for Ptf+i, the embedding in

-R    +1 given by Hopf and James [l] is the best possible.

The following information from [3; 4] will be needed. Let M he a

«-manifold differentiably embedded in i?n+i+1; and let p: E—*M de-

note the bundle of unit normal vectors. Then there exist subalgebras

A*iE, Z)EH*iE, Z) and A*iE, Z2)EH*iE, Z2) which satisfy the
following conditions:

1. A\E, G) = 77°(£, G),
2. H*(E, G)=A*iE, G)+p*iH«iB, G)) (0<q<n+k),
3. A<iE, G) = 0,q^n+k,
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