LINEAR RELATIONS BETWEEN HIGHER ADDITIVE COMMUTATORS

O. TAUSSKY AND H. WIELANDT ${ }^{1}$

It has been noticed earlier [1] that the iterated commutators

$$
\begin{equation*}
b_{1}=a b-b a, \quad b_{i}=a b_{i-1}-b_{i-1} a \quad(i=2,3, \cdots) \tag{1}
\end{equation*}
$$

of 2×2 matrices a, b with elements in a field F (which we may assume algebraically closed) satisfy the linear relation

$$
\begin{equation*}
b_{3}=\left(\alpha_{1}-\alpha_{2}\right)^{2} b_{1} \tag{2}
\end{equation*}
$$

where α_{1}, α_{2} denote the eigenvalues of a. Although it is easily seen and well known (cf. e.g. [2]) that also for any two $n \times n$ matrices a, b, where $n>2$, there exist linear relations between the b_{i} whose coefficients are independent of b no such relation seems to be explicitly known. We want to generalize (2) to $n \times n$ matrices.

The mapping $x \rightarrow A x:=a x-x a$ is a linear operator on the n^{2} dimensional space $F_{n \times n}$ of all $n \times n$ matrices x with elements in F. By the Hamilton-Cayley Theorem A satisfies its characteristic equation, say $h(A)=0$. If $\alpha_{1}, \cdots, \alpha_{n}$ denote the eigenvalues of a the eigenvalues of A are known [3] to be $\alpha_{i}-\alpha_{j}(i, j=1,2, \cdots, n)$, hence

$$
\begin{align*}
h(z) & =\prod_{i, j}\left[z-\left(\alpha_{i}-\alpha_{j}\right)\right]=z^{n} \prod_{i<j}\left[z^{2}-\left(\alpha_{i}-\alpha_{j}\right)^{2}\right] \tag{3}\\
& =z^{n} \cdot\left(z^{2 N}-\delta_{1} z^{2 N-2}+\delta_{2} z^{2 N-4}-\cdots+(-1)^{N} \delta_{n}\right)
\end{align*}
$$

where $N=n(n-1) / 2$ and δ_{k} is the k th elementary symmetric function of the $\left(\alpha_{i}-\alpha_{j}\right)^{2}, 1 \leqq i<j \leqq n$. As $h(A) b=0$ and $A^{k} b=b_{k}$ we have

$$
\begin{equation*}
b_{2 N+n}-\delta_{1} b_{2 N+n-2}+\delta_{2} b_{2 N+n-4}-\cdots+(-1)^{N} \delta_{N} b_{n}=0 \tag{4}
\end{equation*}
$$

Although this is a linear relation between the b_{i} it is not a generalization of (2) as (4) for $n=2$ gives $b_{4}=\left(\alpha_{1}-\alpha_{2}\right)^{2} b_{2}$ which is weaker than (2). This suggests that (3) is not the minimum polynomial of A. Indeed a factor z^{n-1} may be cancelled: ${ }^{2}$

Theorem 1. Let a, b be $n \times n$ matrices with elements in a field F. Define b_{1}, b_{2}, \cdots by (1) and $\delta_{1}, \cdots, \delta_{N}$ by (3). Then

[^0]\[

$$
\begin{equation*}
b_{2 N+1}-\delta_{1} b_{2 N-1}+\delta_{2} b_{2 N-3}-\cdots+(-1)^{N} \delta_{N} b_{1}=0 \tag{5}
\end{equation*}
$$

\]

This theorem can be easily proved by transformation of a into diagonal form, if all α_{i} are distinct. The general case can be reduced to the one just mentioned by taking for a the "generic" matrix whose n^{2} elements $a_{i j}$ are independent variables. We shall not go into details as we prefer to use a more powerful method which works in arbitrary (associative) rings, not only in algebras. ${ }^{8}$ Obviously Theorem 1 is a special case ($R=F_{n \times n}$) of

Theorem 2. Let R be a ring and Γ its center. Let $a, b \in R$ and define b_{1}, b_{2}, \cdots by (1). Let a satisfy an equation $f(a)=0$ of the form

$$
\begin{equation*}
f(x)=x^{n}-\gamma_{1} x^{n-1}+\gamma_{2} x^{n-2}-\cdots+(-1)^{n} \gamma_{n}, \quad \gamma_{\nu} \in \Gamma \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
b_{2 N+1}-\delta_{1} b_{2 N-1}+\delta_{2} b_{2 N-3}-\cdots+(-1)^{N} \delta_{N} b_{1}=0 \tag{7}
\end{equation*}
$$

where $N=n(n-1) / 2$ and the coefficients $\delta_{k} \in \Gamma$ are defined in the following way: Let x_{1}, \cdots, x_{n} be independent variables, and let $\Phi_{k}\left(c_{1}, \cdots, c_{n}\right)$ be the unique polynomial with integer coefficients which expresses the kth elementary symmetric function d_{k} of the N functions $\left(x_{i}-x_{j}\right)^{2}$, $1 \leqq i<j \leqq n$, in terms of the elementary symmetric functions $c_{1}^{*}, \cdots, c_{n}^{*}$ of the $x_{i} ;$ that is, $d_{k}=\Phi_{k}\left(c_{1}^{*}, \cdots, c_{n}^{*}\right)$. Then $\delta_{k}=\Phi_{k}\left(\gamma_{1}, \cdots, \gamma_{n}\right)$.

As the mapping $x \rightarrow a x-x a$ is a derivation in the ring R one can suspect that Theorem 2 belongs to the theory of derivations and can be proved by means of that theory (cf. e.g. [2]). However, Theorem 2 can also be considered as a special case of a theorem which refers neither to derivations nor even to rings but to double modules:

Theorem 3. Let M be a left R_{1}-module and a right R_{2}-module where R_{1} and R_{2} are two rings over a common subring Γ which is in the center of both R_{1} and R_{2}. Let $\gamma x=x \gamma$ for all $\gamma \in \Gamma, x \in M$. Let $a_{1} \in R_{1}, a_{2} \in R_{2}$, $b \in M$ and define $b_{1}=a_{1} b-b a_{2}, b_{i}=a_{1} b_{i-1}-b_{i-1} a_{2}(i=2,3, \cdots)$. Let $f\left(a_{1}\right)=f\left(a_{2}\right)=0$ where f is a polynomial of the form (6). Then (7) holds.

Theorem 2 is what becomes of Theorem 3 if we specialize $R_{1}=R_{\mathbf{2}}$ $=M=R$ and $a_{1}=a_{2}=a$. On the other hand, Theorem 3 is a consequence of the fact that Lagrange's resolvents work in arbitrary commutative rings, not only in fields (where they usually are employed). More specifically we need

Theorem 4. Let C be a commutative ring, and let $a^{\prime}, a^{\prime \prime} \in C$ satisfy

[^1]$f\left(a^{\prime}\right)=f\left(a^{\prime \prime}\right)=0$ where f is a polynomial of the form
$$
f(x)=x^{n}-\gamma_{1} x^{n-1}+\gamma_{2} x^{n-2}-\cdots+(-1)^{n} \gamma_{n}, \quad \gamma_{v} \in C .
$$

Put

$$
g(z)=z^{2 N+1}-\delta_{1} z^{2 N-1}+\delta_{2} z^{2 N-3}-\cdots+(-1)^{N} \delta_{N} z
$$

where $\delta_{k}=\Phi_{k}\left(\gamma_{1}, \cdots, \gamma_{n}\right), k=1, \cdots, N$, is defined as in Theorem 2. Then $g\left(a^{\prime}-a^{\prime \prime}\right)=0$.

Theorem 3 follows from Theorem 4 if we choose for a^{\prime} the endomorphism $x \rightarrow a_{1} x$ of M, for $a^{\prime \prime}$ the endomorphism $x \rightarrow x a_{2}$ of M, and for C that subring of the endomorphism ring of M which is generated by $a^{\prime}, a^{\prime \prime}$ and the n endomorphisms $x \rightarrow \gamma_{\nu} x=x \gamma_{\nu}$.

We prove Theorem 4 by means of an elementary algebraic identity:
Lemma. Let $x, y, z, c_{1}, c_{2}, \cdots, c_{n}$ be independent variables over the field Q of rational numbers, and let Z denote the ring of rational integers. Put

$$
f(x)=f\left(x ; c_{1}, \cdots, c_{n}\right)=x^{n}-c_{1} x^{n-1}+c_{2} x^{n-2}-\cdots+(-1)^{n} c_{n}
$$

and

$$
g(z)=g\left(z ; c_{1}, \cdots, c_{n}\right)=z^{2 N+1}-\Phi_{1} z^{2 N-1}+\cdots+(-1)^{N} \Phi_{N} z
$$

where $\Phi_{k} \in Z\left[c_{1}, \cdots, c_{n}\right], k=1, \cdots, N$, is defined as in Theorem 2. Then there exist polynomials $p, q \in Z\left[x, y, c_{1}, \cdots, c_{n}\right]$ such that

$$
\begin{equation*}
g(x-y)=p f(x)+q f(y) \tag{8}
\end{equation*}
$$

identically in $x, y, c_{1}, \cdots, c_{n}$.
In order to prove the lemma we divide $g(x-y)$, qua polynomial in x, by $f(x)$. As the highest coefficient in $f(x)$ is 1 no denominators arise, and we obtain

$$
g(x-y)=p f(x)+\sum_{\mu=1}^{n-1} r_{\mu} x^{\mu}
$$

where $p \in Z\left[x, y, c_{1}, \cdots, c_{n}\right]$ and $r_{\mu} \in Z\left[y, c_{1}, \cdots, c_{n}\right]$. Now we divide each r_{μ}, qua polynomial in y, by $f(y)$ and obtain

$$
\begin{equation*}
g(x-y)=p f(x)+q f(y)+\sum_{\mu, \nu}^{n-1} r_{\mu \nu} x^{\mu} y^{\nu} \tag{9}
\end{equation*}
$$

where $q \in Z\left[x, y, c_{1}, \cdots, c_{n}\right]$ and $r_{\mu \nu} \in Z\left[c_{1}, \cdots, c_{n}\right]$. In order to prove $r_{\mu \nu}=0$ we take independent variables x_{1}, \cdots, x_{n} and denote
their elementary symmetric functions by $c_{1}^{*}, \cdots, c_{n}^{*}$. By definition of $g(z)$ we have (cf. (3))

$$
g\left(z ; c_{1}^{*}, \cdots, c_{n}^{*}\right)=z \prod_{i \neq j}\left[z-\left(x_{i}-x_{j}\right)\right]
$$

hence

$$
g\left(x_{i}-x_{j} ; c_{1}^{*}, \cdots, c_{n}^{*}\right)=0 \quad(i, j=1, \cdots, n)
$$

This together with (9) shows that the polynomial

$$
r^{*}(x, y)=\sum_{\mu, \nu}^{n-1} r_{\mu \nu}^{*} x^{\mu} y^{\nu}, \quad r_{\mu \nu}^{*}=r_{\mu \nu}\left(c_{1}^{*}, \cdots, c_{n}^{*}\right)
$$

has the n^{2} zeros $x=x_{i}, y=x_{j}$ in the field $Q\left(x_{1}, \cdots, x_{n}\right)$. As the degrees of r^{*} with respect to x and y are both less than n we find $r_{\mu \nu}^{*}=0$, hence $r_{\mu \nu}=0$ as $c_{1}^{*}, \cdots, c_{n}^{*}$ are algebraically independent. Hence (9) reduces to (8), and the lemma is proved. Theorem 4 follows from the lemma by specializing $x=a^{\prime}, y=a^{\prime \prime}$ and $c_{i}=\gamma_{i}$ in (8).

References

1. T. Kato and O. Taussky, Commutators of A and A^{*}, J. Washington Acad. Sci. 46 (1956), 38-40.
2. S. A. Amitsur, Derivations in simple rings, Proc. London Math. Soc. 7 (1957), 87-112.
3. C. C. MacDuffee, The theory of matrices, Springer, Berlin, 1933; pp. 83-84, 89.

California Institute of Technology
University of Tübingen, Germany

[^0]: Received by the editors March 8, 1961 and, in revised form, October 10, 1961.
 ${ }^{1}$ The work of this author was supported by the National Science Foundation and the Deutsche Forschungsgemeinschaft.
 ${ }^{2}$ For a specified matrix a, the minimum equation of A may even have a smaller degree than $2 N+1$. This leads to the problem to determine the elementary divisors of $a \times 1-1 \times a$, where \times denotes the Kronecker product.

[^1]: ${ }^{3}$ We are indebted to the referee for pointing out this possibility.

