
LINEAR RELATIONS BETWEEN HIGHER
ADDITIVE COMMUTATORS

O. TAUSSKY AND H. WIELANDT1

It has been noticed earlier [l ] that the iterated commutators

(1) bi — ab — ba,       ô, = abi-i — bi-ia (i = 2, 3, • • • )

of 2X2 matrices a, b with elements in a field F (which we may as-

sume algebraically closed) satisfy the linear relation

(2) h = (ai - a2)2bi

where «i, a2 denote the eigenvalues of a. Although it is easily seen

and well known (cf. e.g. [2]) that also for any two nX« matrices

a, b, where n>2, there exist linear relations between the o,- whose

coefficients are independent of 6 no such relation seems to be explic-

itly known. We want to generalize (2) to nXn matrices.

The mapping x—*Ax : = ax — xa is a linear operator on the n2 dimen-

sional space FnXn of all nXn matrices x with elements in P. By the

Hamilton-Cayley Theorem A satisfies its characteristic equation, say

h(A) = 0. If cti, ■ • • , an denote the eigenvalues of a the eigenvalues of

A are known [3] to be «< — a,- (i,j=l, 2, ■ • ■ , n), hence

h(z) = u [« - («< - «;)] = zn II [«* - («< - a,)2]

(3)
m  zn.rz2N _ JlZ2tf-2 + 5222AT-4 _-1_ (_ 1)*^)

where N = n(n —1)/2 and 5* is the &th elementary symmetric func-

tion of the (ai—a,)2, lgi<ji£n. As h(A)b = 0 and Akb = bk we have

(4) 02JV+n  —  Slbw+n-2 + S^^+n-i  —   •   •   •   +   (—l)N5Nbn   =   0.

Although this is a linear relation between the Ô,- it is not a general-

ization of (2) as (4) for n = 2 gives bi=(ai — a2)2b2 which is weaker

than (2). This suggests that (3) is not the minimum polynomial of A.

Indeed a factor zn_1 may be cancelled :2

Theorem 1. Let a, b be nX.n matrices with elements in a field F.

Define bit o2, • • •  by (1) and bi, • ■ ■ , On by (3). Then
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2 For a specified matrix a, the minimum equation of A may even have a smaller de-

gree than 2N+\. This leads to the problem to determine the elementary divisors of

oX 1 — 1 Xa, where X denotes the Kronecker product.
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(5) 02W+1 — Sib2ff-i + Í202AT-S — • • • + (—l^Srrbi = 0.

This theorem can be easily proved by transformation of a into

diagonal form, if all a, are distinct. The general case can be reduced

to the one just mentioned by taking for a the "generic" matrix whose

«2 elements an are independent variables. We shall not go into details

as we prefer to use a more powerful method which works in arbitrary

(associative) rings, not only in algebras.8 Obviously Theorem 1 is a

special case (R = FnXn) oí

Theorem 2. Let Rbe a ring and T its center. Let a, bER and define

h, b2, • • •   by (1). Let a satisfy an equation f (a) =0 of the form

(6) f(x) = x" - Ti*"-1 + y2x"~2 - ■ ■ ■ + (-l)"7n, y, E T.

Then

(7) b2N+i — Sib2N-i + ¿202ÍV-3 — • • • + (— l)N8ifbi = 0

where N=n(n—l)/2 and the coefficients bkET are defined in the follow-

ing way: Let xi, • ■ ■ , xn be independent variables, and let $k(ci, • • •, cn)

be the unique polynomial with integer coefficients which expresses the

kth elementary symmetric function dk of the N functions (xí—Xj)2,

1 =i<J = w, i« terms of the elementary symmetric functions c*, ■ ■ ■ , c*

of the Xí; that is, dk=$k(c?, • • • , c„*). Then ôk=$k(yi, ■ ■ ■ , yn).

As the mapping x—*ax — xa is a derivation in the ring R one can

suspect that Theorem 2 belongs to the theory of derivations and can

be proved by means of that theory (cf. e.g. [2]). However, Theorem

2 can also be considered as a special case of a theorem which refers

neither to derivations nor even to rings but to double modules:

Theorem 3. Let M be a left Ri-module and a right R2-module where

Ri and R2 are two rings over a common subring T which is in the center

of both Pi and R2. Let yx = xy for all yET, xEM. Let aiERi, a2ER2,
bEM and define bi = aib — ba2, o, = aiO<_i —0<_iO2 (i = 2, 3, ■ • ■). Let

f(ai) =f(a2)=0 where f is a polynomial of the form (6). Then (7) holds.

Theorem 2 is what becomes of Theorem 3 if we specialize Ri = R2

= M = R and 0,1 = 02 = a. On the other hand, Theorem 3 is a conse-

quence of the fact that Lagrange's resolvents work in arbitrary com-

mutative rings, not only in fields (where they usually are employed).

More specifically we need

Theorem 4. Let C be a commutative ring, and let a', a"EC satisfy

3 We are indebted to the referee for pointing out this possibility.
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f(a') =f(a") = 0 where f is a polynomial of the form

fix) = x" - Tix"-1 + Y2X"-2 - • • • + (-l)"7n,      y, E C.

Put

giz) = z2^1 - ôiz™-1 + ô2z2N-* - ■ ■ ■ + i-l)NSNz

where 8t=$kiyu • • ■ ,yn),k = l, ■ ■ ■ , N,is defined as in Theorem 2.

Then gia'-a")=0.

Theorem 3 follows from Theorem 4 if we choose for a' the endomor-

phism x—*aix of M, for a" the endomorphism x—+xa2 oí M, and for C

that subring of the endomorphism ring of M which is generated by

a', a" and the n endomorphisms x—vyrx = xyy.

We prove Theorem 4 by means of an elementary algebraic identity :

Lemma. Let x, y, z, Ci, c2, • • ■ , cn be independent variables over the

field Q of rational numbers, and let Z denote the ring of rational integers.

Put

f(x) = f(x; ci, • ■ ■ , ci) = xn - cix"-1 + c2x"-2 - • • • + (-1)%,

and

giz) = giz; cw", cn) = z2N+1 - Siz™-1 + ■■■ + (-l)w*w*

where $*£Z[ci, • • • , c„], k — l, ■ • ■ , N, is defined as in Theorem 2.

Then there exist polynomials p, qEZ[x, y, ci, • • • , cn] such that

(8) gix - y) = pfix) + qfiy)

identically in x, y, ci, • • • , c„.

In order to prove the lemma we divide gix — y), qua polynomial in

x, by/(x). As the highest coefficient in/(x) is 1 no denominators arise,

and we obtain

n-l

gix - y) = pfix) + X) V

where pEZ[x, y, ci, • ■ ■ , cn] and rpEZ[y, C\, • • • , c„]. Now we

divide each rM, qua polynomial in y, by/(y) and obtain

n-l

(9) gix - y) = pfix) + qfiy) + 2 VY

where qEZ[x, y, Ci, • ■ ■ , cn] and r„„£Z[ci, • • ■ , c„]. In order to

prove r„„ = 0 we take independent variables xi, • • • , x„ and denote
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their elementary symmetric functions by c*, ■ ■ ■ , c„*. By definition

of g(z) we have (cf. (3))

g(z\ ci, ■ ■ • , cn) = z II [z - (*< - */)]>

hence

g(x¡ - x¡; ci, • • • , c») = 0       (y" = 1, • • • , «).

This together with (9) shows that the polynomial

* ^U-,      *      ¡I    V * * *

f (x> y) - 2^ rwx y i     v = >>(ci, ••-,<;„)

has the w2 zeros x — Xi, y = x¡ in the field Q(xu ••-,*„). As the de-

grees of r* with respect to x and y are both less than « we find

r*„ = 0, hence r,,„ = 0 as c¿*, • • • , c* are algebraically independent.

Hence (9) reduces to (8), and the lemma is proved. Theorem 4 fol-

lows from the lemma by specializing x = a', y = a" and c, = 7< in (8).
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