$$F(1) = 1$$
 $F(5) = 88$ $F(9) = 1,097,780,312$
 $F(2) = 1$ $F(6) = 1,802$ $F(10) = 376,516,036,188$
 $F(3) = 2$ $F(7) = 75,598$
 $F(4) = 9$ $F(8) = 6,421,599$

REFERENCES

- 1. W. Ackermann, Die Widerspruchsfreiheit de allgemeinen Mengenlehre, Math. Ann. 114 (1937), 305-315.
 - 2. J. L. Kelley, General topology, Van Nostrand, New, York, 1955.

University of California, Davis

A NOTE ON THE GREATEST CROSSNORM

A. F. RUSTON

Schatten has shown [5, Lemma 2, p. 323; 6, Lemma 3.7, p. 55] that, if \mathfrak{M} is a closed subspace of a Banach space \mathfrak{B} , and there is a projection of \mathfrak{B} onto \mathfrak{M} with bound unity, then the greatest crossnorm on the tensor product $\mathfrak{B} \odot \mathfrak{N}$ is an extension of the greatest crossnorm on $\mathfrak{M} \odot \mathfrak{N}$ for any Banach space \mathfrak{N} .

Now it is known that there is a projection with bound unity of the second conjugate \mathfrak{B}^{**} of a Banach space \mathfrak{B} onto \mathfrak{B}_0 (the canonical image of \mathfrak{B} in \mathfrak{B}^{**}) for conjugate spaces \mathfrak{B} and for some others [3, p. 580], though not for all Banach spaces (cf. [7]). For such spaces, then, the greatest crossnorm on $\mathfrak{B}^{**} \odot \mathfrak{N}$ is an extension of the greatest crossnorm on $\mathfrak{B}_0 \odot \mathfrak{N}$. The purpose of this note is to show that the restriction to such spaces is unnecessary. (N.B. \mathfrak{B} is sometimes embedded in \mathfrak{B}^{**} by identifying it with \mathfrak{B}_0 .)

THEOREM. Let \mathfrak{B} and \mathfrak{N} be any Banach spaces. Then the greatest crossnorm on $\mathfrak{B}^{**} \odot \mathfrak{N}$ is an extension of the greatest crossnorm on $\mathfrak{B}_0 \odot \mathfrak{N}$ (where \mathfrak{B}_0 is the canonical image of \mathfrak{B} in \mathfrak{B}^{**}).

Let \mathfrak{X} be any element of $\mathfrak{B}_0 \odot \mathfrak{N} \subset \mathfrak{B}^{**} \odot \mathfrak{N}$. Clearly (in the notation of [2, §2.4, pp. 347-351])

$$\gamma \{\mathfrak{B}^{**} \odot \mathfrak{N}\}(\mathfrak{X}) \leq \gamma \{\mathfrak{B}_0 \odot \mathfrak{N}\}(\mathfrak{X})$$

(since the infimum on the left-hand side is taken over a larger collection of expressions). On the other hand, there exists a continuous

Received by the editors October 5, 1961.

linear functional \mathcal{F} over $\mathfrak{B}_0 \odot_{\gamma} \mathfrak{N}$ with $\mathfrak{F}(\mathfrak{X}) = \gamma \{\mathfrak{B}_0 \odot \mathfrak{N}\}(\mathfrak{X})$ and $\|\mathfrak{F}\| = 1$ [1, Theorem 2.9.3, p. 19]. Now \mathfrak{F} can be associated (cf. [4, Theorem 1.2, p. 78; 6, Theorem 3.2, p. 47]) with a continuous linear operator T on \mathfrak{R} into \mathfrak{B}^* with the same norm as \mathfrak{F} by the rule

$$\mathfrak{F}(\tilde{x} \otimes y) = (Ty)(x) \qquad (x \in \mathfrak{B}, y \in \mathfrak{N}),$$

where \bar{x} is the canonical image of x in \mathfrak{B}^{**} . We now construct a continuous linear operator T' on \mathfrak{N} into \mathfrak{B}^{***} by defining T'y to be the canonical image of Ty in \mathfrak{B}^{***} for each y of \mathfrak{N} . This is associated with a continuous linear functional F' over $\mathfrak{B}^{**} \odot_{r} \mathfrak{N}$ with the same norm as T' by the rule

$$\mathfrak{F}'(X \otimes y) = (T'y)(X) \qquad (X \in \mathfrak{B}^{**}, y \in \mathfrak{N}).$$

Then

$$\mathfrak{F}'(\tilde{x} \otimes y) = (T'y)(\tilde{x}) = \tilde{x}(Ty) = (Ty)(x) = \mathfrak{F}(\tilde{x} \otimes y),$$

and so F' is an extension of F, and

$$||\mathfrak{F}'|| = ||T'|| = ||T|| = ||\mathfrak{F}|| = 1.$$

Hence

$$\gamma\{\mathfrak{B}_0 \odot \mathfrak{N}\}(\mathfrak{X}) = |\mathfrak{F}(\mathfrak{X})| = |\mathfrak{F}'(\mathfrak{X})| \leq \gamma\{\mathfrak{B}^{**} \odot \mathfrak{N}\}(\mathfrak{X}).$$

This inequality, in conjunction with that above, shows that

$$\gamma \{\mathfrak{B}^{**} \odot \mathfrak{N}\}(\mathfrak{X}) = \gamma \{\mathfrak{B}_0 \odot \mathfrak{N}\}(\mathfrak{X}).$$

Since the element \mathfrak{X} of $\mathfrak{B}_0 \odot \mathfrak{N}$ was arbitrary, this completes the proof of the theorem.

REFERENCES

- 1. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1948.
- 2. A. F. Ruston, Direct products of Banach spaces and linear functional equations, Proc. London Math. Soc. 1 (1951), 327-384.
- -, Conjugate Banach spaces, Proc. Cambridge Philos. Soc. 53 (1957), 576-580.
- 4. R. Schatten, The cross-space of linear transformations, Ann. of Math. (2) 47 (1946), 73-84.

 - On projections with bound 1, Ann. of Math. (2) 48 (1947), 321-325.
 A theory of cross-spaces, Princeton Univ. Press, Princeton, N. J., 1950.
- 7. A. Sobczyk, Projection of the space (m) on its subspace (co), Bull. Amer. Math. Soc. 47 (1941), 938-947.

University of Sheffield, Sheffield, England