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Introduction. Let X be a locally compact Hausdorff space with a

countable base for its neighbourhood system. By [5, p. 147] the space

X is a Tychonoff space and is metrizable [5, p. 125].

Let P(x, A) be a transition function, namely: For a fixed xEX,

P(x, A) is a measure, on the Borel subsets of X, with total mass 1.

For a fixed open set A, P(x, A) is continuous.

Define the operators T and 5 by :

(Tf)(x) = f f(y)P(x, dy), fEC(X),
J x

(Sp)(A) =   f P(x, A)p(dx),
J x

where p. is a countable additive measure on the Borel subsets of X,

n(X)<oo.

If fEC(X) then Tf is continuous too. Also

f (Tf)(x)p(dx) =  f f(x)(Sp)(dx);
J X J X

compare with [4].

The space X being a Tychonoff space has a Stone-Cech compactifi-

cation, which will be denoted by X*. See [5, p. 153] or [2, pp. 276-

277].
The operator T is defined, in a natural way on C(X*) and || F¡| = 1,

F^O. Also if p. is a measure on X, and therefore on X*, then T*p
= Sp.

Invariant measure. A measure p, defined on X is called invariant

if Sp = p. By measure we mean positive measure; otherwise it will be

called signed measure.

Lemma 1. Let pbe a measure on X*. If T*p=p then the restriction of

p to X is an invariant measure.
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Proof. Let p=pi-\-p2 where pi is the restriction of p. to X, pi(A)

= p(AC\X) and p2(A) = p.(AC\X*—X). By assumption

ßi + Pi = rVi + T*pi = Sp.i + T*pi.

If v is the restriction of T*p2 to X and <r= T*p2 — v, then

Mi = «Siii + J», M2 = a-.

Now

ßl(X) = (Sßl)(X) + v(X)

but

(SpJ(X) = MiW    or    v(X) = 0.

Thus y = 0 since it is a positive measure.

Lemma 2. Le/ C be a compact subset of X. Let

K = \p\ p è 0 and p(C) ^ s}, 8 > 0.

77îe se/ K is convex and weak * closed.

Proof. Let v be in the closure of K. For every continuous positive

function / which is 1 on C

I   f(x)v(dx) ^ 8

since this holds on K.

Now if U is an open set containing C there is a continuous function

/with 0%f Ú1 andf(x) = l,xQC, f(x) =0,x<£U. (See [3, Chapter X,
Theorem B].) Thus v(U)^8 and by  [3, Chapter X, Theorem E]

Definition 1. A set A is called dissipative if

liminf (S"p)(A) = 0

for every measure p on X. Otherwise it will be called nondissipative.

Theorem 3. If X contains a compact nondissipative set C, then there

exists an invariant measure.

Proof. By assumption there is a measure p and a positive number

5 such that:

(S»p)(C) ¡ï 8, n = 0, 1, 2, • • • .

If L is the closed convex hull of {.S"/x} then v(C)^8 for every

vQL by Lemma 2. Now the set L contains an invariant measure, a,
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by Theorem V.10.5 of [2]. The restriction of this measure to X is

invariant by Lemma 1 and not zero for <r(C) ̂ 5.

In the rest of this paper we will denote S"p by pn.

Let p be an invariant measure on X. Let k = k(p) be its kernel (the

complement of the greatest open set on which p vanishes). Then

p(X -k) =0=  f P(x, X - k)p(dx) =  j  P(x, X - k)p(dx).
J X J k

Thus
P(x, X - k) = 0 a.e.    iíxE R.

By continuity P(x, X — k)=0 if xEk or p,(x k) = \ for all xEk.

Definition 2. A set A CX is called self-contained if it is closed and

P(x, A) = \for allxEA.
Let F"*(x, A) be the nth iterate of P(x, A). Given a self-contained

closed set define

A" = [x\ P»(x, A) > 0\,        A* = U^" - A.

On AP"(x, A) = 1 for every n.

In the terminology of Markov chains, A* consists of inessential

states; see [l, p. 11].

Theorem 4. // p is an invariant measure and A a self-contained set,

thenp(A*) = 0.

Proof. For every »gl

p(A) = pn(A) =  I  Pn(x, A)p(dx)
J x

=  j   Pn(x, A)p(dx) +  I        Pn(x, A)p(dx)

P"(x, A)p(dx).*A) + fJ A*-A"-A

Thus p(An-A) =0.

Lemma 5. If A is self-contained so is B = X — A*.

Proof. The set B is closed and P(x, X—A) = 1 if xEB. It is

enough to show that P(x, An) = 0 for xEB. Now

0 = P"+1(x, A) =  j   P(x, dy)Pn(y, A) =  j    P(x, dy)Pn(y, A).
J X J A"
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Thus

P(x, An) = 0    for    Pn(y, A) > 0, yQ An.

Let us consider the set of all collections {<ra} (of invariant proba-

bility measures) with the property that k(ai)f~\k(a2) =0 if ai^ca.

Order this set by inclusion. By Zorn's Lemma there is a maximal ele-

ment, which we will denote by {pa}.

Lemma 6. The set {pa} is countable.

Proof. One can extract a countable set pi = pci. such that

U (k*(ßi) U k(pt)) = U (k*(pa) \J AGO).

This is possible because the space X is separable. For every pa

pa(X - U (k*(pi) \J k(p,))) = 0

by choice of pi. Also

Pa(k*(pi))   =   0

by Theorem 4. Thus for some i, pa(k(pi)) ¿¿0 and therefore pa = pi.

Let p = ^2tiPi where €¿>0, 2€¿= !• Then k(p) = (lik(pi))~. Denote
Xi = k(p), X2 = k*(p), X3 = X-Xi\JX2.

The sets Xi and X3 are self-contained and on X2 every invariant

measure vanishes.

Theorem 6. If a is an invariant measure then a(X3) = 0.

Proof. Because a(X2) = 0 and Xi, X3 are self-contained, the restric-

tion of 0- to X3 is invariant too. Now if cr(X3) ¿¿0, then a restricted to

X3 would extend the collection {pi}, which was assumed maximal.

The set X\ is thus uniquely defined as the union of all kernels of

invariant measures. Therefore X2 and X3 are uniquely defined too.

Theorem 7. Every compact subset of X3 is dissipative.

Proof. This follows immediately from Theorem 3.

Remark. It is not known to us whether or not lim/x"(C) = 0 for

every compact subset of X3. For Markov chains this is known.

In order to get uniqueness of the invariant measure, it seems rea-

sonable to assume that X contains no proper subsets which are self-

contained. First we will need a result on signed measures. If a is a

signed measure then <r = cr+ — <r_ where <r+ is a measure defined on A,

u^ a measure on B where iU5=Y and AC\B = 0. See [3, p. 123].

Lemma 8. Let a —Sa, then both o~+ and a~ are invariant measures.
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Proof. By definition <r+(B) =<T-(A) =0. Hence

o-(A) = a+(A) =  |   P(x, A)a(dx)
J x

=   I   P(x, A)a+(dx) -   |   P(x, B)a-(dx)
"J A J B

,(A) -  f P(x, A)c.{dx).
J   R

á o-+{

Thus

/
P(x, A)o--(dx) = 0.

B

Now if CCA then

a(C) = o-+(C) =   f P(x, C)a+(dx) -   f P(x, C)a-(dx)
Ja J b

but

f P(x,C)<r-(dx) á  j   P(x, A)o--(dx) = 0.
•J B J B

Also if CCB then er+(C) =0 and

f P(x, C)<7+(áx) á  I   P(x, B)<r+(dx)
•J x Ja

and this is zero by the argument used above applied to —a.

Theorem 9. If X does not contain any proper self-contained subsets,

then there is at most one invariant measure.

Proof. Let pi and p2 be invariant measures. Define pi—pt^ff

= (T+—<r_. Let A and B be as in the previous Lemma. Then k(<r+)

= k(<T-) —X by assumption. Now

<j+(A) =  Í  P(x, A)<r+(dx)

or P(x, A) = 1 a.e. on A with respect to o+. Similarly P(x, A) = 0 a.e.

on B with respect to <r_. Let xEA he such that P(x, A) = l; then

there is a closed set AiCA such that P(x, Ai) > 1/2. See [2, III.9.22].

Now every neighbourhood of x has a positive <r_ measure for ¿(er-) = X.
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Thus every neighbourhood of x contains points y such that yQB and

P(y, A)=0. Hence

0 á P(y, At) £ P(y, A) = 0.

But this contradicts the continuity of P(x, A).
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DARBOUX FUNCTIONS OF BAIRE CLASS
ONE AND DERIVATIVES

C. J. NEUGEBAUER1

Introduction. Let I0— [0, 1 ] and let R be the reals. Let Bt be the

class of functions/: Io-+R of Baire type at most one, and denote by

D the class of functions/: I0—+R which possess the Darboux property,

i.e., take connected sets into connected sets. The class Bif~~\D is

abbreviated by (Bi, D). If A is the class of functions/: 70—»i? which

are derivatives, then we have the well-known relation AQ(BU D). It

is of interest to have characterizations for the classes A and (Bi, D).

In this paper two characterizations of (Bi, D) are given as well as a

characterization of A. This characterization together with one char-

acterization of (Bi, D) provides a measurement by how much a

function in (Bu D) may fail to be in A.

Throughout the paper we will use the following notation. For

A Qh, A° is the interior of A relative to I0, A stands for the closure

of A, and | A \ denotes the Lebesgue measure of A.

First characterization of (Bi, D). We have occasion to use the

following characterizations of B\. (1) fQBi if and only if for each

aQR the sets {x:f(x)^a}, {*:/(*) =a} are Gs; (2) fQBi if and only

if every perfect subset P of I0 has a point of continuity of /| P

(/restricted to P) [3].
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