DIFFERENTIAL OPERATORS WITH A PURELY CONTINUOUS SPECTRUM

KURT KREITH

We consider a formally self-adjoint differential operator

$$L = -\frac{1}{r(x)} \frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x)$$

whose coefficients are positive and of class C^1 on $[0, \infty)$. Let $\mathfrak{L}^2_r(0, \infty)$ denote the class of complex valued functions v(x) which satisfy

$$||v||^2 = \int_0^\infty r |v|^2 dx < \infty$$

and assume that L is in the limit point case at ∞ . Then the boundary value problem

(1)
$$Lu = \lambda u,$$

$$u(0) = 0; \qquad ||u|| < \infty$$

gives rise to an operator \overline{L} which is self-adjoint in \mathfrak{L}^2_{r} .

The question which we shall investigate is: When is the spectrum of \overline{L} purely continuous? One such result is given in [1, Chapter 9, problem 4] for the case $p=r\equiv 1$. This problem states that if

$$\int_0^\infty |q(x)| dx < \infty$$

then the spectral function $\rho(\lambda)$ corresponding to \overline{L} is continuous (and in fact of class C^1) on $[0, \infty)$. A different result in this direction is given by the following¹

THEOREM. If $p' \leq 0$, $r' \geq 0$, and $(rq)' \leq 0$ on $(0, \infty)$, then the spectrum of \overline{L} is purely continuous.

PROOF. Since the eigenfunction corresponding to any isolated eigenvalue of \overline{L} belongs to \mathfrak{L}_2^r , it is sufficient to show that for any $\lambda > 0$ every solution of

Received by the editors February 1, 1962.

¹ Referee's comment. The hypotheses of the author's theorem automatically ensure that L is in the limit point case at $x = +\infty$, so that it is unnecessary to make this an additional assumption.

$$Lu = \lambda u,$$

$$u(0) = 0$$

fails to satisfy the condition $\lim_{t\to\infty} \int_0^t r |u|^2 dx < \infty$. If u is a solution of (1') then we have

$$(pu'' + p'u' + r(\lambda - q)u)u' = 0.$$

This is equivalent to

$$(pu'^2)' + p'u'^2 + (r(\lambda - q)u^2)' - (r(\lambda - q))'u^2 = 0.$$

Integrating from 0 to t

$$\int_0^t (-p'u'^2 + (r(\lambda - q))'u^2)dx + p(0)u'(0)^2$$

$$= p(t)u'(t)^2 + r(\lambda - q)u(t)^2.$$

Let $k = p(0)u'(0)^2$. Since p(0) > 0 and $u'(0) \neq 0$, k > 0. Our hypotheses also guarantee that the above integral is a monotonic increasing function of t. Therefore we have

(2)
$$\int_0^T (pu'^2 + r(\lambda - q)u^2) dx \ge kT.$$

We shall refer to this inequality later.

If u is a solution of (1') we also have

$$0 = \int_0^t ((pu')' + r(\lambda - q)u)udx,$$

$$0 = -\int_0^t pu'^2 dx + \int_0^t r(\lambda - q)u^2 dx + pu'u \Big]_0^t.$$

Or finally

(3)
$$\int_0^t (pu'^2 + r(\lambda - q)u^2) dx = 2 \int_0^t r(\lambda - q)u^2 dx + \frac{1}{2} p(t)(u(t)^2)'$$

We consider two possibilities:

A. If there exists a positive constant M for which $(u(t)^2)' > 0$ for all t > M, then clearly u does not belong to \mathcal{L}_t^2 .

B. If there exists a sequence of positive numbers $\{t_n\}$ for which $t_n \uparrow \infty$ and $(u(t_n)^2)' \le 0$ then by (2) and (3) we conclude that

$$2\int_0^{t_n} r(\lambda-q)u^2dx \geq \int_0^{t_n} (pu'^2+r(\lambda-q)u^2)dx \geq kt_n.$$

Since rq is positive we have

$$\int_0^{t_n} ru^2 dx \ge \frac{k}{2\lambda} t_n.$$

Again we conclude that $u \in \mathfrak{L}^2_r$.

BIBLIOGRAPHY

- 1. E. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
- 2. F. Rellich, Über das Asymptotische Verhalten der Lösungen von $\Delta u + \lambda u = 0$ in unendlichen Gebieten, Jber. Deutsch. Math.-Verein. 53 (1943), 57-65.

University of California, Davis