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If A is a set, let Ix be all functions from X into the unit interval /.

Note that if/and g are in Ix then so are 1 — f and fg. Such a collection

of functions is said to have property V. That is, F has property V in

case

(i) FEIX for some set X,

(ii) /G F implies 1-/GP
(hi) /, gEF implies fgEF.

Giving Ix the topology of uniform convergence, we have that the

closure of a set with property V has property V, as does the inter-

section of such sets. Thus every subset of Ix is contained in a smallest

set with property V, and in a smallest closed set with property V. If

A is a topological space then the set D(X) of all continuous functions

from X into J is closed and has property V. The idea of considering

such collections of functions comes from a statement of von Neumann

in [l]. Essentially, he claims without proof what we give here as a

corollary to Theorem 2. I am indebted to Dr. R. S. Pierce for bringing

the problem to my attention.

Definition. If w is a positive integer, let Pn be the smallest subset

of D(In) that has property V and contains the « projections.

Lemma 1. Let F have property V, pEPn, and fkEF for k=l, 2,

••-,«. Then the function f defined by

/(*) = pifii*),Mx), ■ ■ ■ ,Mx))

is in F.

Proof. Let Q be the set of all qEDil") for which qifiix), fiix),
• • • , /n(x)) is in F. Then Q has property V and contains the »

projections. So Q contains Pn.

Lemma 2. If a<b and e>0, then there exists pEPi such that

p > 1 — e in [0, a],

p < t in [b, l].

We set [0, a] = 0 if a<0 and [b, l] = 0 ifb>\.

Proof. Since for a sufficiently large integer k, x*(l— x)*<e and
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1 —x*(l —x)*> 1 — € for all x in 7, we can assume that O^a and b^ 1.

Also, since there exist a', V such that a<a'<b' <b, we can assume

that 0 <a <b < 1. Now our solution will be of the form p(x) = (1 — xm)\

Pick r such that (f)r<e. Pick m, s such that

(i\±<s<±<(jL\±
\ 4 / bm bm     \r/am

Let n = rs and note that nam<e, f <söm<l. So

(1 - am)n > 1 - nam > 1 - «,

(1 - bmY = [(1 - bm)']r < \l - sbm + — (sbn)2\   < \—\  < e.

One can prove by induction that if 0<x<l then (1—x)B<l—»x

+h(nx)2.

Lemma 3. If ak, bkEI for k = l, 2, • • • , » then

n n n

IT ak - II °k   û E I ak - bk | .
i i i

Proof. The induction step can be verified as follows. Let

a = axa2 - - • a„-x and b = bxb2 • • • bn-x- So a, bEI and

| aan — bbn\   Ú \ aan — ban\  + \ ban — bb„ \

^ | a - b |  + | an - bn | .

Lemma 4. Let (a, b)ElXI and e, 5>0. Then there exists pEP2 such

that

pix, y) > 1 - e if ix - a)2 + (y - b)2 ^ S2,

pix, y) < « if ix - a)2 + iy - b)2 ^ (45)2.

Proof. Let the functions px, p2, pz, piEPx correspond by Lemma 2

to a-25<o-5, a + 5<ö-l-25, &-25<ö-5, è + 5<& + 25 and e/4>0,
respectively. Then let p be given by

pix, y) = [1 - pxix)]p2ix)[l - Pziy)]piiy).

Lemma 5. Let A, B EIXI be closed and disjoint. If e>0 and pEPt,

then there exists 2GP2 such that

q^ pin I XI,

q > 1 — e in A,

q < p + e in B.
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Proof. We can assume that A and B are nonvoid. Let 45

= dist(^4, B). Then ô>0 and there exist (ck, dk) EA for k= 1, 2, • • ■ ,n

such that the 5-neighborhoods of the (ck, dk) cover A. For each k there

exists qkEP2 such that

qk(x,y) > 1 - 0i if (x - c*)2 + (y - c4)2 ^ Ô2,

g»(*, y) < e/n if (x - Ck)2+ (y- dk)2 ^ (45)2.

Let qo=(l—qi)(l—q2) ■ ■ ■ (l—qn). It is clear that g0>l—e in B,

and e/o<e/» in A. Now let g = 1 — (1— p)qo- In /X/ we have g^l

— (1 — p) =p. In ^4 we have g^l — g0>l — «• And in F we have g — p

= l-qa+pqo-p=(l-qo)(l-p)<e.

Theorem 1. Let X be a set and F a closed subset of Ix. If F has prop-

erty V then F is a lattice.

Proof. In view of Lemma 1, it is enough to prove that the func-

tions (x, y)—>xAy and (x, y)—>x\/y of IXI into I can be uniformly

approximated by members of F2. Since x\/y=l — (l—x)A(l—y), it

is enough to check xAy- Let 0<e<| and let C be the set of all

(x, y)ElX I for which e^xAyâl— «• Then C is closed and there
exists m>0 such that xmym<e in C. Let p(x, y) = l—xmym. Then

l-t<p<l in C. For è^Olet

Ak= {(x,y)EC\pk(x,y) ^ xAy),

Bk= {(x,y)EC\pk(x,y) úxAy}.

Then Ai = C and for k^O

Ak D Ak+i,       BkDC - Ak, Ak+i r\Bk = 0.

Because the Ak have void intersection, there exists «>2 such that

A„ = 0. For k = l, 2, ■ ■ ■ , n pick g*GF2 such that q^p in 7X I,
qk>l—e/n in Bk-i, and gJ;<p + e/n in Ak. Let q = qxq2 ■ ■ • q„. Now

C = Uî-1 (yl/t —ylit+i). For ¿ = 1, 2, •••,»— lwe have in Ak — Ak+i

0^pk-xAy<pk- Pk+l = pk(l - p) < e.

Also, we have

g I  è I P" - pk+l I + I ¿*+1 - g I  < e + a+i n?y

= « + Z I/--<?,! + I#-í*+i| +Ê|i
1 A+2

< 6 + k— + (1 - p) + (n - k - 1) — < 3é.
n n
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Thus in C, |g—xAy| <4e. Now by Lemma 5, there exists g'GPs

such that q'^q in IXI, q'>l—e if xAyàl —e, and q'<q + e if

xAy^l— 2e. Clearly \q'—xAy| <6e if xAyè«. Similarly, there

exists q"EP2 such that q" g g' in IXI, q" <e if x Ay è e, and q" >q'-e

if xAy^2e. So |?"-xAy| <8ein all of/XP

Theorem 2. Let X be a compact space and F a closed, point-separat-

ing subset of DiX) that has property V. If S is the set of points of X

taken into the doubleton {0, 1} by every member of F, then F consists of

all functions fEDiX) for which f(S) C {0, 1}.

Proof. It is well known [2] that for a compact space Y, a closed

sublattice of C(Y) contains any continuous function which it ap-

proximates at each pair of points. So, let fED(X) be such that

f(S) C {0, 1}, and let u, v be distinct elements of X. The case when

X has only one element is straightforward.

Suppose u, vES. Then there exists gEF such that giu) ^g(v), and

then one of g, l—g, g(l—g), 1— gil— g) duplicates/on u and v.

If uES, v(£S, then there exists gEF such that giu) =f(u) and

g(s)£(0, 1). As can be seen from Lemmas 1 and 2, something of the

form 1 — (1 — gm)n will do.

If u, v(£S, then there exist gi, g2, gzEF such that gi(z>)=gi(«)

£(0, 1), g2iu) eg2Ív)EiO, 1), and gziv) <gziu). If we let hx = gxgz and

h2 = g2il—gz), we have hxiv) <hxiu) <1 and h2iu) <h2iv) <1. Some-

thing of the form /2= (1 — h'2)' approximates 1 at u and / at v. Some-

thing of the form /i=(l— h\)m approximates f at u and 1 at v. So

/1/2 approximates f at u and v.

Corollary. The smallest closed subset of D(In) having property V

and containing the projections and at least one constant cG(0, 1) is

D(In) itself.
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