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In the standard theorems on weak convergence of stochastic

processes, it is invariably assumed that the parameter set is a

bounded interval. The object of this paper is to indicate that ana-

logues of these theorems for unbounded intervals are also valid. We

shall confine our attention to the results of Skorohod [l], and in par-

ticular to those results concerning his Ji topology.

Let £ be a complete separable metric space with metric p. We de-

note by K the space of all E-valued functions x(t), 0^/< », which

at every point have a limit from the left and are continuous from the

right. We define on K the topology Ji: a sequence x„(f) is said to be

/i-convergent to x(t) if there exists a sequence of continuous one-to-

one mappings \n(t) of the interval [0, ») onto itself such that for

each A7>0

sup   | X„(/) — f| —»0   and     sup  p(xn(t), x(\n(t))) —>0    as»—><».
OSiSJV 0£t¿N

Note that for continuous x(t), xn(t) converges to x(/) in the Ji

topology if and only if for each N>0

sup  p(xn(t), x(t)) —> 0 as n —* «>.

Let Xn(t), « = 0, 1, 2, • • -, be stochastic processes whose paths are

in K. We denote by Cthe collection of all functionals/on K such that

(1) /(!„(•)) are random variables; and (2) / is continuous in the Ji

topology almost everywhere with respect to the measure on K cor-

responding to the process X0(t).

The sequence Xn(t) is said to be weakly convergent to Xoit) if for

all /EC the distribution of/(Xn(-)) converges to the distribution of

fXoi-)) as «-»oo.

Theorem. The sequence X„it) is weakly convergent to Xoit) if and

only if
(1) the finite dimensional distributions of X„it) converge weakly to

the finite dimensional distributions of Xoit) as n—* <*> ; and

(2) for every e>0 and N>0
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lim  Pr{ sup min[piXnitx),Xnit));piXnit),Xnit2))]> e} =0.
„-.»; «-C<<,<l,<l+<:;

e-tf OSl,<í,áJV

As a direct consequence, if almost all the paths of Xoit) are con-

tinuous functions, then the above theorem remains valid if (2) is

replaced by the simpler condition that

(2') for every e>0 and N>0

lim      Pr{ sup piXnih), Xniti)) > e} = 0.

Proof. We construct a new metric space E* with metric p* as

follows : E* = {9} yj {ie, t) \ e EE and 0 á t < 1} (here 9 is an abstract

element corresponding to / = 1);

P*((«i, li)> (ea, t2)) = ir~l min (1 — h; 1 — t2) tan_1p(ei, e2) + \ h — t2\,

p*((e, t), 0) = p*(9, (e, t)) = 1 - t,    and   p*(fl, 6) = 0.

It is easy to verify that E* is a complete separable metric space.

Wedenote by A* the space of all £*-valued functions y (t), 0=i^l,

which, at every point have a limit from the left and are continuous

from the right, and are such that y(t) = (e, t) for some eEE, 0 ^t < 1,

and y(l) =9. The functions in K* are all continuous from the left at

/=1 (this is the point of the above construction). We define on K*

the topology J*'- a sequence y„(i) is said to be J*-convergent to y(t)

il there exists a sequence of continuous one-to-one mappings X*(/)

of the interval [0, 1 ] onto itself such that

sup   |a„(í)—i| —>0   and   sup p*(yn(/)),   y(\n(t)) —> 0   as»—»».
Oáíál 0¿t¿l

Let T denote the one-to-one transformation from K onto K* which

assigns to the function x(t) in K the function y(t) in K*, where y(t)

= (x(tan (ir/2)0, 0. 0gi<l, and y(l)=0. Letting X„(f) and X*(Y)
be related by

* 2 / 7T    \
\n(t) = — tan-1 X„( tan —1\,

we see that xn(t) converges to x(t) in the Jx topology if and only if

yn(t) = Txn(t) converges to y(t) = Tx(t) in the J* topology.

Consider the stochastic process Yn(t) = TXn(t). The path functions

of Y„(t) are all in K*. We denote by C* the collection of all functionals

/* on K* such that (1) f*(Yn(-)) are random variables for

» = 0, 1, 2, • • • , and (2) /* is continuous in J* topology almost every-

where with respect to the measure on K* corresponding to the proc-

ess Yo(t).
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Conditions (1) and (2) of the above theorem are easily shown to

be respectively equivalent to the following conditions:

(1*) the finite dimensional distributions of F„(i) converge weakly

to the finite dimensional distributions of F0(i) as «—* » ; and

(2*) for every e>0

limPrf sup min[p*(Fn(/1),Fn(/));p*(FB(0,FB(/2))]>e}=0.
n-.»; t-e<l,<l<tt<t+c;

c-M) Oáf,<i,ál

By Theorems 3.2.1-3.2.3 of [l] (see remark below), (1*) and (2*)

are necessary and sufficient in order that for all /* E C* the distribu-

tion of/*(F„(-)) converges to the distribution of/*(F0(-)) as n—»°o.

Thus (1) and (2) are necessary and sufficient in order that for all

fEC the distribution of fiX„i-)) converges to the distribution of

fXoi-)) as »—►«>. This completes the proof of the above theorem.

Remark. In Skorohod's paper K* is replaced by Ke', the space

of all functions y(/) defined on the interval [0, l] whose values lie in

E*, and which at every point have a limit from the left and are con-

tinuous from the right (and from the left at t= 1). But K* is a meas-

urable subset of Kb', and Skorohod's proofs work when K* is sub-

stituted for Kb*.
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