A NOTE ON THE REPRESENTATION OF α -COMPLETE BOOLEAN ALGEBRAS CAROL R. KARP It is a fundamental theorem of representation theory for Boolean algebras that every \aleph_0 -complete Boolean algebra is an \aleph_0 -homomorphic image of an \aleph_0 -field of sets. It is also well known that there is a 2^{\aleph_0} -complete Boolean algebra which is not a 2^{\aleph_0} -homomorphic image of a 2^{\aleph_0} -field of sets. The usual proof goes by constructing a complete Boolean algebra that is not $(\aleph_0, 2)$ -distributive; that is, one that does not satisfy the equation $$\prod_{\mu<\omega}\sum_{\nu<2}b_{\mu\nu}=\sum_{f\in2^\omega}\prod_{\mu<\omega}b_{\mu f(\mu)}.$$ Since this equation involves only 2^{\aleph_0} -operations and holds in \aleph_0 -fields of sets, it also has to hold in 2^{\aleph_0} -homomorphic images of 2^{\aleph_0} -fields of sets. It was, however, an open question whether or not one could prove the existence of an \aleph_1 -complete Boolean algebra not an \aleph_1 -homomorphic image of an \aleph_1 -field of sets without using the continuum hypothesis. This question is answered in this note. We construct a complete Boolean algebra which does not satisfy the inequality (1) $$\prod_{\nu < \omega_1} \sum_{\mu < \omega} b_{\nu\mu} \leq \sum_{\nu \neq \nu' < \omega_1} \sum_{\mu < \omega} b_{\nu\mu} \cdot b_{\nu'\mu}.$$ Since this inequality involves only \aleph_1 -operations and holds in \aleph_1 -fields of sets, it also has to hold in \aleph_1 -homomorphic images of \aleph_1 -fields of sets. From now on, let us identify a given cardinal \aleph with the first ordinal number having cardinal \aleph , and identify a given ordinal number with its set of predecessors. If α is any cardinal number, let α^+ be the first cardinal larger than α . It is customary to call an α -complete Boolean algebra α -representable if it is an α -homomorphic image of an α -field of sets. Consider this question: Which cardinals α have the property R_{α} : There is an α^+ -complete α -representable Boolean algebra which is not α^+ -representable? It is known that regular infinite cardinals α have property R_{α} if $\alpha^{+}=2^{\alpha}$. Examples of complete α -representable algebras which are not $(\alpha, 2)$ -distributive are given in Smith [6] and Scott [4]. In this note Received by the editors June 20, 1962. we show that all regular infinite cardinals α have property R_{α} making no use of any form of the continuum hypothesis. The proof goes by constructing a complete α -representable Boolean algebra that does not satisfy the inequality $$(1)_{\alpha} \qquad \prod_{\nu < \alpha^{+}} \sum_{\mu < \alpha} b_{\nu\mu} \leq \sum_{\nu \neq \nu' < \alpha^{+}} \sum_{\mu < \alpha} b_{\nu\mu} \cdot b_{\nu'\mu}.$$ These algebras are also (β, γ) -distributive for all cardinals $\beta < \alpha$ and all γ . They are not (α, α) -distributive. The problem of determining which, if any, singular infinite cardinals have property R_{α} seems to be open, even assuming the generalized continuum hypothesis. Let α be a regular infinite cardinal. Considering the set X of all one-to-one functions on α into α^+ as points, take as a basis for open sets the empty set, together with sets $A_g = \{f: f \in X \text{ and } f | \text{Dom } g = g\}$, where g is a one-to-one function on a subset of α having cardinal less than α , into α^+ . If $\{A_{g(i)}: i \in I\}$ is a collection of fewer than α nonempty basic sets, then one sees that $\bigcap_{i \in I} A_{g(i)} \neq \emptyset$ if and only if $\bigcup_{i \in I} g(i)$ is a one-to-one function. Since the regularity of α guarantees card $\bigcup_{i \in I} \text{Dom}(g(i)) < \alpha$, $\bigcap_{i \in I} A_{g(i)}$ is either empty or is equal to A_g , where $g = \bigcup_{i \in I} g(i)$. Thus the collection of basic open sets is closed under intersections of fewer than α elements. Moreover, since $\bigcup_{i \in I} g(i)$ is a one-to-one function if and only if $g(i) \bigcup_g (i')$ is a one-to-one function for each pair $i, i' \in I$, we have the following compactness property: (*) If $\{A_{g(i)}: i \in I\}$ is a collection of fewer than α nonempty basic open sets such that no pair has an empty intersection, then $\bigcap_{i \in I} A_{g(i)}$ is a nonempty basic open set. Basic sets are open-closed, since $X \sim A_g = X \sim \bigcap \{A_{\{(\mu\nu)\}}: (\mu\nu) \in g\}$ = $\bigcup \{X \sim A_{\{(\mu\nu)\}}: (\mu\nu) \in g\}$, while for any pair $(\mu\nu) \in \alpha \times \alpha^+$, $$X \sim A_{\{(\mu\nu)\}} = \bigcup \{A_{\{(\mu\nu')\}} : \nu \neq \nu' < \alpha^+\}.$$ Let B_{α} be the algebra of regular open sets of this space. This algebra consists of sets S such that S = in cl S under operations $$-S = \operatorname{in} (X \sim S)$$ $$\sum_{\xi} S_{\xi} = \operatorname{in} \operatorname{cl} \bigcup_{\xi} S_{\xi}$$ $$\prod_{\xi} S_{\xi} = \operatorname{in} \operatorname{cl} \bigcap_{\xi} S_{\xi}.$$ Such algebras are always complete. See Sikorski's book [5] for details. THEOREM. Algebras B_{α} are α -representable and (β, γ) -distributive for all $\beta < \alpha$ and all cardinals γ . The inequality $(1)_{\alpha}$ does not hold in B_{α} . Hence B_{α} is not α^+ -representable. PROOF. Property (*) implies that B_{α} is β -atomic for all $\beta < \alpha$. Therefore, for the distributivity of B_{α} , we can refer the reader to Pierce [3], where, in turn, he will be referred to [2]. The method in [3] for showing that β -atomicity implies β +-representability, can also be used to show that β -atomicity for all $\beta < \alpha$ implies α -representability. One can conveniently use either the condition of Chang in [1] or of Smith in [6]. We claim that $\operatorname{cl} \bigcup_{\mu < \alpha} A_{\{(\mu\nu)\}} = X$ for any $\nu < \alpha^+$. For if A_g is any nonempty basic open set with $\nu \in \operatorname{Rng}(g)$, then $A_g \subseteq A_{\{(\mu\nu)\}}$ where $\mu = g^{-1}(\nu)$. If A_g is a nonempty basic open set with $\nu \in \operatorname{Rng}(g)$, then we can choose $\mu \in \alpha \sim \operatorname{Dom}(g)$ since $\operatorname{Dom}(g)$ has cardinal less than α . For such a μ , $g \cup \{(\mu\nu)\}$ is a one-to-one function, and therefore $A_g \cap A_{\{(\mu\nu)\}} \neq \emptyset$. In B_{α} , therefore, $\prod_{\nu<\alpha^{+}}\sum_{\mu<\alpha}A_{\{(\mu\nu)\}}=X$, the unit of the algebra. On the other hand, $A_{\{(\mu\nu)\}}\cdot A_{\{(\mu\nu')\}}=\emptyset$ for any $\nu\neq\nu'<\alpha^{+}$ and $\mu<\alpha$. Hence $(1)_{\alpha}$ fails in B_{α} . ## REFERENCES - 1. C. C. Chang, On the representation of α -complete Boolean algebras, Trans. Amer. Math. Soc. 85 (1957), 208-218. - 2. R. S. Pierce, Distributivity and the normal completion of Boolean algebras, Pacific J. Math. 8 (1958), 133-140. - 3. ——, A generalization of atomic Boolean algebras, Pacific J. Math. 9 (1959), 175-182. - 4. D. Scott, The independence of certain distributive laws in Boolean algebras, Trans. Amer. Math. Soc. 84 (1957), 258-261. - 5. R. Sikorski, Boolean algebras, Springer, Berlin, 1960. - 6. E. C. Smith, Jr., A distributivity condition for Boolean algebras, Ann. of Math. (2) 64 (1956), 551-561. University of Maryland