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Let j(w) denote the absolute invariant of the modular group, well

known from the theory of elliptic modular functions, usually defined

by

j(u) = 1728^—-       7<o>0,
A(«)

where A(co) stands for the discriminant of the complex lattice generated

by 1 and to and g2(u) is the Weierstrass invariant of this lattice.

If ti=Q(\/ — D) is an imaginary quadratic number field, it is well

known from the theory of class fields with complex multiplication

that the "singular values" j(a), where a£û, la >0, generate alge-

braic number fields which are abelian over fi, namely the so-called

ring class fields. Detailed references for the literature on the theory of

ring class fields may be found in the report of Deuring [l].

In the rather extensive theory of ring class fields it is shown that

®Uia))/Q iS a normal extension with its Galois group © being an ex-

tension of the abelian Galois group ß of Q(j(a))/Çl, completely de-

termined by the relations

(1) t2 = 1 ;        tot = o--1    for all o- E ß,

where t is the automorphism sending every number into its complex

conjugate.

For sake of brevity we denote ® by ®= {t, ß}.

It is the purpose of this note to give a simple proof for an inversion

of the above theorem for which the author has not been able to find

any reference. The result concerns the case where the order of the

abelian group ß is an odd number. In fact, we are going to state the

following.

Theorem 1. Let K be a normal extension of the rational number field

Q containing some imaginary quadratic field Q. Suppose that the Galois

group, ©, is generated by an abelian subgroup ß and an element r,

subject to the conditions (1) so that ®= {r, ß}. If the order n of ß

is odd, then K is contained in a ring class field: KQil(j(a)) (with

uniquely determined imaginary quadratic fi). In particular, the assump-

tion on the Galois group is satisfied for any dihedral group D2n with an
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odd n, or more specially, for any nonabelian group ® of order 2p with p

being an odd prime.

Remark. For a more precise result than just K being contained

in a ring class field one cannot hope. In fact, the statement is an

analogon to the classical Kronecker-Weber Theorem according to

which every absolute abelian number field is a subfield of a cyclo-

tomic field.
Proof. Obviously ft is a normal subgroup of index 2 in ©. Conse-

quently, the numbers in K left fixed by the automorphisms of ft form

a number field of absolute degree 2. Since the degree of K/Q is 2n, n

being an odd integer, K cannot contain more than one quadratic sub-

field; hence the imaginary quadratic subfield ñ of K must be the

quadratic subfield corresponding to ft.

Now K/Q, is an abelian extension with ft as its Galois group. Let f

be the conductor of the corresponding class group 5C in fl and / the

least rational multiple of f. If 3C/ denotes the group of principal ideals

generated by the numbers in the order mod /, the corresponding

class field is a ring class field and hence of the form Q(j(a)) for a

suitable a£ß, la>0. It suffices to show the inclusion 3C/Ç3C since

this by virtue of the "Anordnungssatz" (see for instance Hasse [2,

I, §6, Theorem 10]) implies KQti(j(a)).

In other words, we have to show that any principal ideal (a) with a

generator a = rational number mod/is contained in 3C. Since the ray

a = l mod/surely belongs to 3C, it will be sufficient to prove that the

set of rational integers prime to/is a subset of 3C. According to Artin's

reciprocity law this amounts to showing that the Artin symbol

((K/Q)/r) = 1 for any rational integer r with (r, f) = 1.

By the well-known rules valid for the Artin symbol we have for

any automorphism a from ©

/<tK/<tQ\ /K/Q

Since oK = K, o-Q, = ß and r' = r, we have

jo-1        for aller E ®,

which means that ((K/Q)/r) is an element of the centre of ®. Now,

as the order n of ft is odd, it is easily verified that ®'s centre consists

of the identity only. Hence we have that ((K/ü)/r) = 1. Q.E.D.

As an application of the above theorem in elementary number

theory we consider the cubic congruence

>-•
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(2) f(x) = x8 + ax2 + bx + c = 0        mod ¿

with integral a, b and c.

If D denotes the discriminant of f(x) and p a prime >3, Skolem

(see for instance Hölzer [3, §24, Theorem l]) has shown that (D/p)

= — 1 implies that (2) has exactly one root, while (D/p) = 1 implies

that (2) has either three or no roots.

Concerning the last case, (D/p) = l, we prove the following.

Theorem 2. Let the discriminant D of f(x) be negative and written in

the form D= —Am2, where A is a square-free natural number. If p

is representable by the form p = u2-\-A2\ D\ v2 for A = l or 2 mod 4 and

P = j(u2+A2\D\v2) for A = 3 mod 4, the congruence (2) has three dis-

tinct solutions.

Proof. Let K denote the splitting field (within the field of complex

numbers) of f(x) over Q. If p is a prime with (D/p) = 1 and p splits

totally in K, the congruence/(x) =0 mod p has three distinct solu-

tions. Obviously, the imaginary quadratic field Q=Q(VT>) is a sub-

field of K and since the Galois group of K/Q is the symmetric group

S3 Theorem 1, with ß being the cyclic subgroup of order 3 (or, alter-

natively, observing that S3 is a nonabelian group of order 2.3), shows

that K is contained in a ring class field over fi.

It now remains to be shown that the least rational multiple / of

the conductor fjc/a of the extension K/Q (i.e., for A's class group in

Í2) divides Am. Noticing that the relative discriminant Dr/si for A/Í2

necessarily divides D we just have to take into account the relation

between Dr/h and fx/n which for a cyclic extension of degree 3 has

the form DK/a = fK/si- This may be inferred from the general conduc-

tor-discriminant formula ("Führer-Diskriminantensatz")

£>Kia = IT fk/a,
x

where fK/a runs over the conductors of the characters x of A's class

group in fi, or alternatively, from the more special and not so deep

theorem (see Hasse [2, la, §9, Theorem 3]) which says that DK/a

= fx/Q for any cyclic extension of prime degree p.

In this way we obtain

fjr/o I Driq I D = — Am ,

which implies fX/a| V(— A)m, and this again implies f\Am, which

completes the proof.

As a special case of Theorem 2 we mention the following
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Corollary. A noncubic integer d is a cubic residue for any prime

p^l mod 3, whose canonical representation p = \(u2+21v2) has the

congruence property v = 0 mod 3d.

In fact, we only have to observe that the discriminant of f(x)

= x3-d is -27¿2 and A= -3.
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