ON MINIMAL SETS OF GENERATORS OF PURELY INSEPARABLE FIELD EXTENSIONS

PAUL T. RYGG1

1. Let F be an extension field of K. A minimal set of generators of F over K is a subset S of F such that F = K(S) and $S' \subset S$ implies $K(S') \subset K(S)$ where \subset denotes proper inclusion. Pickert [4, p. 88] has shown that if F is a finite inseparable extension of K (the characteristic of K is $p \neq 0$) and $S = \{a_1, \dots, a_n\}$ is a minimal set of generators of F over K, then S is p-independent in F (this concept, due to Teichmüller [5], is defined in §2 following) and is a minimal set of generators of F over $F^p(K)$. A relative p-basis of F over K, as introduced in [5], is a minimal set of generators of F over $F^p(K)$. It is shown by Becker and MacLane [1, Theorem 6] that if F is a finite purely inseparable extension of K, then the minimal number of generators of F over F is F over F is F over F is F over F is F over F in F over F is F over F in F over F is F over F in F over F in F over F is F over F in F over F in F over F is F over F over F in F over F over F is F over F over F in F over F in F over F over F is a finite purely inseparable extension of F over F in F in F in F over F over F over F in F over F in F

In this note we assume that F is a purely inseparable extension of K of arbitrary degree but with finite exponent $e: F^{p^e} \subset K$. It is the purpose of this note to prove the following:

THEOREM 1. If F is a purely inseparable extension of K with finite exponent e, then there exist minimal sets of generators of F over K and any two such sets have the same cardinal number.

This result for the case of exponent e=1 is given by MacLane [2, Theorem 12, p. 463].

2. Let ϕ be a mapping of the set of all subsets of a set F into itself. A subset X is free with respect to ϕ , or ϕ -free (or simply free), when $x \notin \phi(X-x)$ for all $x \in X$. (Here X-x denotes the complement of $\{x\}$ in X.) A ϕ -basis (or simply a basis) of F is a subset X of F that is free and such that $\phi(X) = F$.

The following theorem is well known. (For example see [7, Chapter II].)

THEOREM A. If ϕ satisfies the following dependence axioms: (D₁) $X \subseteq \phi(X)$,

Received by the editors December 1, 1961 and, in revised form, August 13, 1962.

¹ The author is indebted to Professor Bernard Vinograde.

- (D₂) if $x \in \phi(X)$, then $x \in \phi(X_0)$ for some finite subset X_0 of X,
- (D₃) if $X \subseteq Y$, then $\phi(X) \subseteq \phi(Y)$,
- (D₄) $\phi(\phi(X)) = \phi(X)$,
- (D₅) if $y \in \phi(X, x) = \phi(X \cup \{x\})$ and $y \notin \phi(X)$, then $x \in \phi(X, y)$, then there exist bases of F and any two bases have the same cardinal number.

In the case F is an extension field of K we define the mapping ϕ_K by $\phi_K(X) = K(X)$ for $X \subseteq F$. We will say that a subset X of F is minimal with respect to the subfield K when X is free with respect to ϕ_K . A subset X is a minimal set of generators of F over K when X is a ϕ_K -basis of F.

That Theorem 1 does not follow directly from Theorem A is seen from the following example. Let Q be a perfect field of characteristic $p \neq 0$ and let u and v be algebraically independent indeterminates over Q. Define K = Q(u, v) and F = K(x) where $x = (y+v)^{p^{-1}}$ and $y = u^{p^{-1}}$. Obviously $y \in K(x)$ and $y \notin K$. But if $x \in K(y)$, then $y \in K$ so ϕ_K in this case does not satisfy (D_5) .

In [7, p. 129] it is shown that for any field F with characteristic $p \neq 0$ the mapping ϕ_{F^p} satisfies $(D_1) - (D_5)$. The property exhibited by (D_5) in this case is called the exchange property. A ϕ_{F^p} -basis is called a p-basis of F. A subset F of F is p-independent in F if and only if F is free with respect to ϕ_{F^p} .

3. PROPOSITION 1. Let G' be a subset of K that is p-independent in F and such that $F^p(G') = F^p(K)$. If G' is extended to a p-basis $G' \cup M$ of F, then M is a minimal set of generators of F over K.

PROOF. Let $W = G' \cup M$. We have

$$F = F^{p}(W) = F^{p^{e}}(W) = F^{p^{e}}(K, M) = K(M).$$

Assume $a \in M$ and $a \in K(M-a)$. Since $K(M-a) \subset F^p(G', M-a)$, we have $a \in F^p(W-a)$, a contradiction.

COROLLARY. Every p-basis of F contains a subset M that is a minimal set of generators of F over K.

PROOF. Let W be a p-basis of F and put $M' = W \cap (F - F^p(K))$. Let G' be as defined above. Since $F = F^p(G', M')$, G' can be extended to a p-basis $G' \cup M$ where $M \subseteq M'$.

PROPOSITION 2. Let M' be a subset of F that can be extended to a p-basis $M' \cup G^*$ of F where $G^* \subset K$. Then M' is a minimal set of generators of F over K if and only if $F^p(G^*) = F^p(K)$.

PROOF. Assume M' is a minimal set of generators of F over K. If

 $F^p(G^*) \neq F^p(K)$, then there is an element $x \in K$ such that $x \notin F^p(G^*)$ and $x \in F^p(G^*, M')$. This implies that there is a finite subset M_0 of M' and an element $a \in M_0$ such that $x \in F^p(G^*, M_0)$ and

$$x \in F^p(G^*, M_0 - a).$$

By the exchange property we obtain $a \in F^p(G^*, M_0-a, x)$. Since $F^p(G^*, M_0-a, x) \subseteq K(M'-a, a^p)$, we have $a \in K(M'-a, a^p)$. This implies that a is separable over K(M'-a) and, since a is purely inseparable over K, it follows that $a \in K(M'-a)$. This is a contradiction so $F^p(G^*) = F^p(K)$.

If $F^p(G^*) = F^p(K)$, then M' is a minimal set of generators of F over K by Proposition 1.

PROPOSITION 3. If M is a minimal set of generators of F over K, then M is p-independent in F and $F^p(M) \cap F^p(K) = F^p$.

PROOF. If M is not p-independent in F there is an element $a \in M$ such that $a \in F^p(M-a)$. Since $F^p = K^p(M^p)$, this implies that $a \in K(M-a, a^p)$. From this it follows, as in the preceding proof, that $a \in K(M-a)$ which is a contradiction.

Since $F = F^p(M, K)$, M can be extended to a p-basis $M \cup G'$ of F, where $G' \subset K$. From Proposition 2 we have $F^p(G') = F^p(K)$. If $y \notin F^p$ and $y \in F^p(M) \cap F^p(K)$, then there exists a finite subset M_0 of M containing an element a such that $y \in F^p(M_0)$ and $y \notin F^p(M_0 - a)$. By the exchange property we have $a \in F^p(M_0 - a, y)$. Since $y \in F^p(G')$, we obtain the contradiction $a \in F^p(M - a, G')$.

COROLLARY. If M is a minimal set of generators of F over K, then $M \cap F^p(K) = \emptyset$.

PROOF. Since M is p-independent in F, $M \cap F^p = \emptyset$.

PROPOSITION 4. The following assertions are equivalent:

- (a) F = K.
- (b) $F = F^p(K)$.
- (c) K contains a p-basis of F.
- (d) There exists no nonempty minimal set of generators of F over K.

PROOF. It is easily seen that (a), (b) and (c) are equivalent. If M is a nonempty minimal set of generators of F over K, then by the corollary to Proposition 3 we have $M \subseteq (F - F^p(K))$ and $F \neq F^p(K)$. If $F \neq F^p(K)$, then there exists a nonempty minimal set of generators of F over K by Proposition 1.

In the following let $L = F^p(K)$. That ϕ_L satisfies the dependence

axioms (D_1-D_5) follows immediately from the fact that ϕ_{F} satisfies these axioms. An application of Theorem A gives the following:

PROPOSITION 5. There exist minimal sets of generators of F over L and any two such sets have the same cardinal number. (See MacLane [3, §4, p. 376].)

The proof of the following lemma is easily obtained using the exchange property.

LEMMA. If C is a subset of F that is p-independent in F and if B is a subset of F that is minimal with respect to $F^p(C)$, then $B \cup C$ is p-independent in F.

Theorem 1 follows immediately from Proposition 5 and the following:

PROPOSITION 6. Let M be a subset of F. M is a minimal set of generators of F over L if and only if M is a minimal set of generators of F over K.

PROOF. Assume M is a minimal set of generators of F over L. Clearly M is minimal with respect to K. Let G' be as defined in Proposition 1. By the lemma, $G' \cup M$ is p-independent in F and is a p-basis of F since $F = L(M) = F^p(G', M)$. By Proposition 1, M is a minimal set of generators of F over K.

Assume M is a minimal set of generators of F over K. Clearly L(M) = F. M may be extended to a p-basis $M \cup G'$ of F, where $G' \subset K$ and, by Proposition 2, $F^p(G') = L$. Since $M \cup G'$ is p-independent in F, M is minimal with respect to L and so is a minimal set of generators of F over L.

REFERENCES

- 1. M. F. Becker and S. MacLane, The minimum number of generators for inseparable extensions, Bull. Amer. Math. Soc. 46 (1940), 182-186.
- 2. S. MacLane, A lattice formulation for transcendence degrees and p-bases, Duke Math. J. 4 (1938), 455-468.
 - 3. —, Modular fields. I, Duke Math. J. 5 (1939), 372-393.
 - 4. G. Pickert, Inseparable körpererweiterungen, Math. Z. 52 (1949), 81-136.
 - 5. O. Teichmüller, p-Algebren, Deutsche Math. 1 (1936), 362-388.
- 6. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ. Vol. 29, Amer. Math. Soc., Providence, R. I., 1946.
- 7. O. Zariski and P. Samuel, *Commutative algebra*, Vol. I, Van Nostrand, Princeton, N. J., 1958.

WESTERN WASHINGTON STATE COLLEGE