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1. Let F be an extension field of K. A minimal set of generators ol

F over A is a subset S ol F such that F = K(S) and S'ES implies

K(S') EK(S) where C denotes proper inclusion. Pickert [4, p. 88]

has shown that if F is a finite inseparable extension of K (the char-

acteristic of K is p9^0) and S= {ax, • • • , an} is a minimal set of

generators of F over K, then S is ^-independent in F (this concept,

due to Teichmüller [5], is defined in §2 following) and is a minimal

set of generators of F over FP(K). A relative p-basis of F over K, as

introduced in [5], is a minimal set of generators of F over Fp(K). It

is shown by Becker and MacLane [l, Theorem 6] that if F is a finite

purely inseparable extension of K, then the minimal number of gen-

erators of F over K is n, the exponent determined by the degree

[F: Fp(K)]—pn. Closely related results are given by Weil [6, Chapter

I, §5] and by Zariski and Samuel [7, Chapter II, §17] in a discussion

of derivations on fields.

In this note we assume that F is a purely inseparable extension of

K of arbitrary degree but with finite exponent e: FPEK- It is the

purpose of this note to prove the following:

Theorem 1. If F is a purely inseparable extension of K with finite

exponent e, then there exist minimal sets of generators of F over K and

any two such sets have the same cardinal number.

This result for the case of exponent e= 1 is given by MacLane [2,

Theorem 12, p. 463].

2. Let 0 be a mapping of the set of all subsets of a set F into itself.

A subset X is free with respect to (p, or (¡¡-free (or simply free), when

x(£tf3(A— x) for all xEX. (Here X — x denotes the complement of

{x} in X.) A (¡¡-basis (or simply a basis) of F is a subset X ol F that

is free and such that <¡¡(X) = F.

The following theorem is well known. (For example see [7, Chapter

II].)

Theorem A. If (¡¡ satisfies the following dependence axioms :

(DO XQ<p(X),
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(D2) if xE(p(X), then xE(p(Xo) for some finite subset Xo of X,
CD,) ifXQY, then 4>(X)Qd>(Y),
(DO (t>(4>(X))=(p(X),
(D6) ifyE<b(X, i)=^(IUJij) and y$4>iX), then xE(piX, y),

then there exist bases of F and any two bases have the same cardinal num-

ber.

In the case F is an extension field of K we define the mapping d>K

by <pK(X)=K(X) for XÇZF. We will say that a subset X of F is

minimal with respect to the subfield K when X is free with respect to

(pK- A subset X is a minimal set of generators of F over K when X is

a $K-basis of F.

That Theorem 1 does not follow directly from Theorem A is seen

from the following example. Let Q be a perfect field of characteristic

p¿¿0 and let u and v be algebraically independent indeterminates over

Q. Define K = Q(u, v) and F=K(x) where x= (y+v)p~l and y = up~1.

Obviously yEK(x) and y(£K. But if xEK(y), then yEK so 4>k in
this case does not satisfy (D5).

In [7, p. 129] it is shown that for any field F with characteristic

pT^O the mapping </>Fp satisfies (Di) — (D6). The property exhibited by

(D5) in this case is called the exchange property. A 0Fp-basis is called a

p-basis of F. A subset X of F is p-independent in F if and only if X

is free with respect to <pF*.

3. Proposition 1. Let G' be a subset of K that is p-independent in

F and such that F"(G') = F"(K). If G' is extended to a p-basis G'VJM

of F, then M is a minimal set of generators of F over K.

Proof. Let W=G'UM. We have

F = F'iW) = F»°(W) = F"'(K, M) = K(M).

Assume aEM and aEK(M-a). Since K(M-a)EFp(G', M-a), we

have aEF"(W—a), a contradiction.

Corollary. Every p-basis of F contains a subset M that is a minimal

set of generators of F over K.

Proof. Let W be a /»-basis of F and put M' = W(~\(F- F*(K)). Let

G' be as defined above. Since F= FP(G', M'), G' can be extended to a

¿-basis G'UM where MQM'.

Proposition 2. Let M' be a subset of F that can be extended to a p-

basis M'VJG* of F where G* EK- Then M' is a minimal set of gener-

ators of F over K if and only if FP(G*) = FP(K).

Proof. Assume M' is a minimal set of generators of F over K. If
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FP(G*)^FP(K), then there is an element xEK such that xÇ£Fp(G*)

and xEFp(G*, M'). This implies that there is a finite subset M0 of

M' and an element aEMo such that xEFp(G*, M0) and

x <$ Fp(G*, Mo- a).

By the exchange property we obtain aEFp(G*, Mo—a, x). Since

Fp(G*, Mo-a, x)QK(M'-a, ap), we have aEK(M'-a, ap). This

implies that a is separable over K(M' — a) and, since a is purely

inseparable over K, it follows that aEK(M' — a). This is a contradic-

tion so Fp(G*) = Fp(K).

If Fp(G*) = Fp(K), then AT is a minimal set of generators of F

over X by Proposition 1.

Proposition 3. If M is a minimal set of generators of F over K,

then M is p-independent in F and Fp(M)i\Fp(K) = Fp.

Proof. If M is not p-independent in F there is an element aEM

such that aEFp(M-a). Since FP = KP(MP), this implies that

aEK(M — a, ap). From this it follows, as in the preceding proof, that

aEK(M-a) which is a contradiction.

Since F=Fp(M, K), M can be extended to a p-basis MUG' of F,

where G'CA. From Proposition 2 we have F»(G') = FP(K). If

y^Fp and yEFp(M)(~\Fp(K), then there exists a finite subset Af0

of M containing an element a such thatyGFp(Af0) and y(£Fp(Mo — a).

By the exchange property we have aEFp(M0 — a, y). Since yEF"(G'),

we obtain the contradiction aEFp(M—a, G').

Corollary. If M is a minimal set of generators of F over K, then

MC\Fp(K) = 0.

Proof. Since M is p-independent in F, MC\Fp = 0.

Proposition 4. The following assertions are equivalent :

(a) F=K.

(b) F=Fp(K).
(c) K contains a p-basis of F.

(d) There exists no nonempty minimal set of generators of F over K.

Proof. It is easily seen that (a), (b) and (c) are equivalent. If M

is a nonempty minimal set of generators of F over K, then by the

corollary to Proposition 3 we have MQ(F-FP(K)) and F^FP(K).

If F9iFp(K), then there exists a nonempty minimal set of generators

of F over K by Proposition 1.

In the following let L=FP(K). That (¡¡l satisfies the dependence
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axioms (Di-D6) follows immediately from the fact that (pFp satisfies

these axioms. An application of Theorem A gives the following:

Proposition 5. There exist minimal sets of generators of F over L

and any two such sets have the same cardinal number. (See MacLane

[3, §4, p. 376].)

The proof of the following lemma is easily obtained using the

exchange property.

Lemma. If C is a subset of F that is p-independent in F and if B is

a subset of F that is minimal with respect to FP(Q, then BVJC is p-

independent in F.

Theorem 1 follows immediately from Proposition 5 and the follow-

ing:

Proposition 6. Let M be a subset of F. M is a minimal set of gener-

ators of F over L if and only if M is a mininal set of generators of F

over K.

Proof. Assume M is a minimal set of generators of F over L. Clearly

M is minimal with respect to K. Let G' be as defined in Proposition 1.

By the lemma, G'UAf is ¿-independent in F and is a ¿-basis of F

since F=L(M) = FP(G', M). By Proposition 1, M is a minimal set of

generators of F over K.

Assume M is a minimal set of generators of F over K. Clearly

L(M) — F. M may be extended to a ¿-basis M\JG' of F, where

G'C-Kand, by Proposition 2, FP(G')=L. Since M\JG' is ¿-indepen-

dent in F, M is minimal with respect to L and so is a minimal set of

generators of F over L.
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