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Every ring considered in this paper will be assumed to be com-

mutative and to contain an identity element. A ring R will be said

to be a W-ring (or to have property W) if each ideal of R may be

uniquely represented as an intersection of finitely many primary

ideals. A ring R will be called a W*-ring (or to have property W*)

if R is a W-ring and every ideal of R contains a power of its radical.

A quasi-local ring is a ring with exactly one maximal ideal. An

integral domain D is strongly integrally closed if it has the following

property: If x is an element of the quotient field K of D such that all

powers of x are in a finite £>-module contained in K, then x£D.

This paper gives necessary and sufficient conditions that a ring be

a W-ring. The ideal theory of W-rings and W*-rings is also investi-

gated. Mori [3] has given necessary and sufficient conditions for a

ring to be a W-ring, but his characterization of such rings is fairly

involved due to the fact that he does not assume his ring has an

identity.

The terminology used in this paper is that of Zariski and Samuel

[ó]. The symbol Ç is used to denote containment while C de-

notes proper containment. Some elementary properties of W-rings

and W*-rings are these:

Property 1. If R is a W-ring (respectively, W*-ring) and A is an

ideal of R, then R/A is a W-ring (W*-ring) [6, pp. 148-154].

Property 2. If ring R has property W (respectively, W*) and M

is a multiplicative system of R such that 0£Af, then RM, the ring of

quotients of R with respect to M, has property W (W*). In particular,

if P is a proper prime ideal of R, then the quotient ring RP of R with

respect to P has property W (W*) [6, p. 225].

Property 3. A finite direct sum of rings is a W-ring (W*-ring) if

and only if each summand is a W-ring (W*-ring) [6, p. 175].

Lemma 1. If Risa quasi-local ring having property W, R is a primary

ring or a one-dimensional integral domain.

Proof. We suppose that R is not a primary ring. Then R is not

zero-dimensional. We shall first show that R is one-dimensional.

Suppose that there exist proper prime ideals P0, Pi, P2 of R such that

PoEPiEPi- By passage to R/Po we may suppose R is a W-domain
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containing a nonmaximal prime ideal Pt^(0). We choose pER\P

such that P + (p) is a proper ideal of R. If M is an isolated prime ideal

of P-\-(p), then by Property 3, we may assume M is the maximal

ideal of R. R is an integral domain so that if dEP, d^O, then (d)M

E(d). Hence there exists an ideal Q primary for a prime ideal P' in

the primary representation of (d)M such that dEQ- Since dMÇ.Q,

MÇZP' so that P' = M since M is maximal. We have PQQ and

QÇ£P. Property 1 implies that we may assume PC\Q=(0). Further,

if Qa is any ideal of R primary for M, then Qi\Qa = Q and hence

QQQc from the uniqueness of the representation. Clearly P is the

unique minimal prime ideal of R. Since M is a minimal prime ideal

of P + (p), V(p) = M so that (p) is primary for M [6, p. 153]. For

some integer n, (pn) = (p)nÇ^Q. From the minimality of Q among

those ideals primary for M, we have Q = (p)n = (p)n+1 = • • • , a con-

tradiction. Thus R has dimension one.

Now let M be the maximal ideal of R and let P be a nonmaximal

prime ideal of R. We first show that if Q is primary for M, then

PEQ- If this were not the case, then as above we may assume

PC\Q= (0). From the one-dimensionality of R, P and M are the only

two prime ideals of R. Hence if qEQ, qEP, (q) is primary for M so

that Q=(q) = (q2), again a contradiction. We proceed to show that

P=(0). By what we have just shown, if pEP and p is in no other

minimal prime ideal of R, then (p) is P-primary. Also, if mEM and

m is in no minimal prime ideal of R, (m) is Af-primary. Hence

(p)^P^im). Then for some y ER, p = my. Since ip) is P-primary and

mEP, yEip) so that p = msp. Now 1— sm is a unit in R so that

p = 0. Therefore P= (0) and R is a domain as asserted.

Theorem 1. A ring is a W-ring if and only if it is a finite direct sum

of primary rings and one-dimensional integral domains in which every

nonzero ideal is contained in only finitely many maximal ideals.

Proof. We first prove that a one-dimensional integral domain J

in which every nonzero ideal has only finitely many maximal ideal

divisors is a W-domain. Thus if A is a nonzero ideal of J and if

Mx, M2, ■ ■ ■ , Mi is the set of maximal ideals containing A, we let Qi

be the If ¿-primary ideal JC\AJMi- Clearly AQB = Qxi\ ■ • ■ i\Qt.
But for any maximal ideal M of /, AJM = BJM so that A =B. The

uniqueness of the representation follows easily from the fact that J

is one-dimensional [5, p. 45]. Thus by Property 3, it is clear that the

condition given is sufficient.

We now suppose that R is a PF-ring and (0) =Qx(~^ • ■ • C\QnI^Px

r\ • • • C\Pm is the primary representation of (0) where each Qi is
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primary for a maximal ideal Mi and each P¡ is primary for a non-

maximal prime ideal. If M is any maximal ideal properly containing

some Pj, Rm is a quasi-local W-ring which is not a primary ring.

Lemma 1 implies that Pj is its own prime radical, that P¡ is the only

prime ideal contained in M, and that P¡ is contained in every M-

primary ideal of R. Thus if i?¿j, Pi and Pj are comaximal and since

the given representation is irredundant, P¡ and Qk are comaximal for

each k. Hence i?~r?/(?i© • • • ®R/Qn®R/Pi® • • • ®R/Pm [6,

p. 178]. Clearly each R/Qi is a primary ring and as noted above, each

R/Pj is a one-dimensional integral domain. Because R/Pj is a W-

domain, every nonzero ideal of R/Pj has only finitely many maximal

ideal divisors.

Theorem 2. A W-ring is a W*-ring if and only if every nonzero ideal

of R contains a product of nonzero prime ideals.

Proof. The condition is obviously necessary. In view of Theorem 1

and Property 3, to show the condition is sufficient we need only con-

sider the case when R is a primary W-ring or when R is a W-domain.

In the second case, if 0^(0) is a primary ideal of R with radical P

and if Ç2 MI1 ■ ■ ■ M¡' where each M, is a maximal ideal of R, then

P = Mi for some * from the one-dimensionality of R. If P = Mi, then

M% ■ ■ ■ Mt'QP so that M?QQ and R is a W*-domain. If R is a
primary W-ring with maximal ideal M and if mEM, w^O, then

im)'^Mi for some i. Thus (0) = (w*)3Mik for some k. Therefore R

is a W*-ring.

Combining Theorem 1 with Theorem 2 we obtain :

Theorem 3. ^4 rirag R* is a W*-ring if and only if R* is a finite direct

sum of primary rings having nilpotent maximal ideals and one-dimen-

sional integral domains in which every nonzero ideal contains a product

of nonzero prime ideals.

Corollary 3.1. If A is a proper ideal in a W*-ring R*, then f)An

is the intersection of the primary components of (0) contained in A.

Proof. In view of Theorem 3 and the obvious validity of the theo-

rem for primary W*-rings, it suffices to prove the theorem in the case

when R* is a domain and A is a prime ideal, and even in this case

we may assume that R* is quasi-local and A its maximal ideal. Then

if aEA, a5^0, then (a2) is ^4-primary and a(£ia2). Since (a2) contains

a power of A, a£D^4" so that 0.4" = (0) and our proof is complete.

Corollary 3.2. In a W*-domain J* every proper ideal is a product

of nonfactorable ideals.
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Proof. Suppose A, ^ (0) or /*, is not a product of nonfactorable

ideals. Let Pi, P2, • • • , Pt be the maximal ideals containing A. For

any integer » we have A=AxA2 ■ ■ ■ Ant where the A¡ are proper

ideals. Each A¡ is contained in one of Pi, • • • , P< so that for some i,

AQP". Therefore for some k, AQf\PÎ, a contradiction since C\Pl

= (0).

It is clear that a l47'*-domain J* is a Dedekind domain if and only

if primary ideals of J* are prime powers. Or, stated otherwise, J* is a

Dedekind domain if and only if J*, is a discrete valuation ring for

every prime ideal P of J*. However, it is easily seen that if J*> is a

valuation ring at all it is discrete [l]. From this observation, it fol-

lows that a M/*-domain satisfying any one of seven conditions of

Cohen [2] is a Dedekind domain.

In the following theorem, this result will be used: If A and B are

ideals of a W*-domain, A:B = A il and only if B is contained in no

prime ideal of A [5, p. 36].

Theorem 4. If the W*-domain D is strongly integrally closed, then

D is a Dedekind domain.

Proof. To show D is Dedekind, it suffices to show that if P^(0)

is a prime ideal of D, then P is invertible [4]. D is one-dimensional

so that if pEP, pT^O, P is a prime ideal belonging to ip). Hence

ip) :PDip)- Let aEip): P, aEip)- If P-1 is the set of all elements s of

K such that sPQD, then a/pEP~\ a/pED. Now PQPP^QD so
that either P = PP-1=(PP-1)P~1= - - - or P is invertible. If

P = P(P~1)k for each positive integer k, and if tEP~l, all powers of t

are in the finite 7)-submodule of K generated by l/p. Since D is

strongly integrally closed, tED so that P-1Ç7>, a contradiction.

Hence P is invertible.

The following example of Krull demonstrates that Theorem 4 need

not be valid if D is integrally closed in the ordinary sense. It also

shows that a quasi-local IF*-domain need not be Noetherian.

Let K be a field and let D be the set of all elements/(x, y)/g(x, y)

such that x does not divide g and /(0, y)/g(0, y)EK. It is readily

checked that D is a quasi-local domain of dimension one. (The maxi-

mal ideal, M, consists of all f/g where x divides/.) If f/gEM and n

is the highest power of x that divides/, then Mn+1Q(f/g). Hence D

is a l¥*-domain. It is easy to check that D is integrally closed. But

D is not a valuation ring: let ii = xy/y + l, z> = x(y + l)/y. Neither

u/vor v/uliesin D.Now ilai = x(y-\-l)/yiandil Ai= (ax, a2, • • • ,a<),

it may be shown that ^4iC^2C ■ • • C^4nC^4»+iC • • • , so that D

is not Noetherian.
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