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REPRESENTATIONS
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It has been conjectured that the group algebra Q[G] of a discrete

group G over the rational numbers Q is semi-simple. In this paper we

consider irreducible representations of this algebra satisfying certain

finiteness conditions and see just how much information these yield

towards solving the above problem. We show in fact for a finitely

generated group G, Q[G] has "enough" of these representations to

guarantee that it is semi-simple if and only if G is a subdirect product

of finite groups.

We use freely the basic results on the irreducible representations

and the Jacobson radical of an algebra as found in [2].

1. The finite radicals. Let A be an algebra over a field K (all fields

considered here are characteristic zero) and let

SF: ,4 ^ Horn* (V, V)

be an irreducible representation of A on the module V.

Definition 1. ff is said to be finite if V is finite-dimensional over

the center of the commuting ring of SF.

Definition 1*. î is said to be * finite if V is finite-dimensional

over K.

Clearly ÍF is finite if it is *finite.

Definition 2. The intersection of the kernels of all finite repre-

sentations (all representations are assumed irreducible) of A is called

the finite radical of A and is denoted by/-Rad A.

Definition 2*. The intersection of the kernels of all *finite repre-

sentations of A is called the * finite radical of A and is denoted by

/*-Rad A.
We have clearly

(1) /*-Rad A 2/-Rad i 3 Rad i,

where the last term is the Jacobson radical of 4. If 4 is finite-

dimensional over K we have equality throughout.

The main results of this section are

Theorem I. 7/4 is a finitely generated algebra over K then f*-Rad A

=f-RadA.
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Theorem II. If A is a finitely generated algebra over K and if E is

an extension field of K then

/-Rad(£ ® A) = E® (/-Rad A),

where the tensor products are over K.

Let î be a *finite representation of an algebra B. Then for all

bEB, 5(b) can be written as a finite matrix [5(b)] over K. With

respect to this we have a well defined character x with

x(b) = trace [5(b)]
and we have

Lemma 1. Kernel 5= {bEB\yfbxEB, x(bbx)=0}.

Proof. By the finiteness assumption 5(B) is simple so ker 5 is a

maximal ideal of B. On the other hand, the right hand expression 77

above is an ideal in B containing the kernel. Since all fields considered

here are characteristic zero xil)^^ so 1 EH. Hence 77 is a proper

ideal and the result follows.

If B = E®A (viewed as an algebra over E) then since x is E linear

we see that

kerff = {bE B\ Va E A,xiba) = 0}.

Let A now be finitely generated by the elements ax, a2, ■ ■ • , at

over the field K.

Lemma 2. Let aEA and let 5 be a * finite representation of E®A such

that 5ia)^0. Then there exists a * finite representation 3 of A with

3(o)^0.

Proof. Let x be the character associated with 5 over the field E.

By the remark after Lemma 1 there exists an element aoEA with

XÍaao)5¿0.

Case 1. Let E be purely transcendental over K. Now each of the

5(üi) can be written as matrices of finite degree m over E. The

coefficients which occur are then rational functions over K and so also

is x(aao)- Let p be the product of all the denominator polynomials

in the coefficients of all the [5(a¡) ] and the numerator polynomial of

xiaao). Since x(aaà) 9^0, p is a nonzero polynomial in a finite number

of variables over K.

Let Xi, x2, ■ ■ ■ , Xj be the variables which occur in all these coeffi-

cients. Since pT^-O and K is infinite (having characteristic zero) there

exists elements kx, k2, • ■ ■ , k¡EK such that p(kx, k2, ■ ■ ■ , k/)^0.

The maps x —»£¿ then induce a well defined K homomorphism
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k:A->ffiA)-+Km

since the a< generate 4.

The result will follow if we show that the image of a is not in the

Jacobson radical of hiA) since A(4) is finite-dimensional over K.

However, if this were not the case then hiaao) would be nilpotent.

But when viewed in Km this element has trace (which is clearly the

image of %iaao)) not equal to zero and this is the required contradic-

tion.

Case 2. Let E be algebraic over K. Then the coefficients of all the

[iF(at-)] are finite in number and generate a finite field extension Ei

over K. Thus iF(4) is finite-dimensional over K and it suffices to

show that this is semi-simple. But if this were not the case, then its

radical, a nonzero nilpotent ideal, would span a nonzero nilpotent

ideal in SF(£®4), a contradiction.

Case 3. Finally let E be an arbitrary field extension of K. Let Ei

be an intermediate field generated by a transcendence base of E/K.

Then E/Ei is algebraic and Ex/K is purely transcendental. By Case 2

we can find a *finite representation ÍFi of Ei®A such that !Fi(cO^O.

Now by Case 1 there is a *finite representation 3 of 4 with 3(a) ^0

and thus the result.

Proof of Theorem I. We already have/*-Rad 4 3/-Rad 4. Let

a£4 with a£/-Rad 4. Then there is a finite representation iF of 4

with EF(a) ?¿0. If E is the center of the commuting ring, then ff can be

extended in a natural way to a *finite irreducible representation of

E®A. By Lemma 2 there is a *finite representation 3 of 4 with

3(a)^0. Thus a£/*-Rad 4 and this yields the reverse inclusion.

Proof of Theorem II. Since the / and /* radicals are the same,

we will prove this result for the /* radical instead. If a£/*-Red A

then by Lemma 2 there are no *finite representations 5 of E®A

with 5(a) ?*0. Hence a£/*-Rad (E®A). Thus /*-Rad (E®A)

2£®/*-Rad4.
Conversely let b = eiai + c2cV2 + • • ■ + enan be an element of

/*-Rad (E®A) where the e¿ are elements of E linearly independent

over K and the a<£4. Let ï be a *finite representation of 4. Then

ï(4) is a simple finite-dimensional algebra over K and thus E®$(A)

is semi-simple. Hence under the representation

E® A->E®3(A)

b must map into zero. Thus

«i[S(«i)] + • ■ • + enfria*)] = 0.

Since each matrix [iF(ai)] has coefficients in K, by the linear inde-
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pendence of the e,- we have for all i,5 (a,) = 0. Since this is true for all

*finite representations of A, it follows that each a¿G/*-Rad A and

we have the reverse inclusion.

2. Group algebras. If G is a finitely generated group, then these

elements and their inverses will generate Q[G] over Q. Hence the

group algebra Q[G] is finitely generated. We now determine its finite

radical.

Theorem III. Let G be a finitely generated group. The following are

equivalent :

(i) f-RadQ[G] = (0),
(ii) f*-RadQ[G] = (0),
(iii) G is a subdirect product of finite groups.

Theorem IV. Let G be a finitely generated group and let 77 be the

intersection of all normal subgroups of finite index in G. Thenf-Rad Q [G]

is the smallest ideal containing all the elements of the form 1—h with

hEH.

We first need the following

Lemma 3. Let gEG be such that 1—gG/*-Rad Q[G]. Then there

exists a normal subgroup N of finite index in G with g G A.

Proof. Since 1— g£/*-Rad Q[G], there is a *finite representation

5 with 5{V)9i5ig). Now ?F(G) is a finitely generated multiplicative

subgroup of Qm the mXm matrices over Q. Let t denote the set of

primes (in the rational integers) which occur in the denominators of

the coefficients of the generators and their inverses. Then ir is of

course a finite set.

For any prime p E"*, 5(G)ÇZ(Zp)m, the latter being the mXm matri-

ces over the integers Z localized at p. The homomorphism

Zp -* Zp/pZp = Z/pZ

then induces a homomorphism 6P of 5(G) onto a finite group. If we

assume now that p does not divide the numerator of some coefficient

of 5(\ —g)y^0 then g£A where N is the kernel in G of 6Po 5. Since

N has finite index the result follows.

Proof of Theorem III.

(i)—>(ii). This follows immediately from Theorem I.

(ii)—»(iii). Let g5^1 be an element of G. Since 1— g£/*-Rad Q[G],

there exists a normal subgroup N of finite index with g £ A by Lemma

3. Hence the intersection of all such subgroups is (1) and the result

follows.
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(iii)—*(i). If/-Rad Q[G] ^ (0) then by multiplying some element in

the ideal by a suitable group and field element we can assume that

x = 1 + qxgx + q2g2 + ■ ■ ■ + qjgj £/-Rad Q[G],

where the qiEQ and the giEG with all g, distinct and not equal to

the identity.

Since G is a subdirect product of finite groups there is a normal sub-

group N of finite index in G with gi(£N for all i. The natural map

Ç[G]—>Q[G/N] maps Q[G] onto a semi-simple finite-dimensional

algebra. Thus/-Rad Q[G] is contained in the kernel of this homo-

morphism. In particular the image of x is zero. This is the required

contradiction since by our choice of N the identity term will not be

cancelled.

We remark that (iii)—»(i) is a special case of a result of Villamayor

in [4]. Our proof also does not require that G is finitely generated

and it yields the additional result that the irreducible representations

of the algebras Q[G/N] viewed as representations of Q[G] form a

complete set of representations for the group algebra.

Proof of Theorem IV. This is essentially a corollary of the above.

Let 7 be the ideal of Q[G] spanned by the elements I—h with A£77.

Then 7 is the kernel of the homomorphism Q[G]—*Q[G/H]. Since

G/77 is a subdirect product of finite groups we have/-Rad Q[G/77]

= (0). But the map is surjective so this clearly implies that/-Rad

Q[G]QI.
On the other hand, by Lemma 3, we see that for all fe£77 we have

1 —Ä£/-Rad Q[G] so we obtain the reverse inclusion.

The following result allows finite methods to be used in studying

groups having all absolutely irreducible representations finite.

Theorem V. Let G be a finitely generated group. If all the irreducible

representations of C[G], the group algebra over the complex numbers,

are finite, then G is a subdirect product of finite groups.

Proof. By assumption/-Rad C[G] = Rad C[G] and the latter is

zero by Theorem 5.2 of [3]. Since C[G] = C(E)i2[G], Theorem II

yields/-Rad Q[G] = (0). By Theorem III the result follows.

Finally we mention that Fuchs-Rabinowitsch gives an example in

[l] of a finitely presented group for which/-Rad Q[G] is not zero. It

is actually easier using his same trick to show that the group is not

a subdirect product of finite groups.
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CERTAIN PROBLEMS OF DIFFERENTIABLE IMBEDDING

YASURÔ TOMONAGA

1. The differentiable imbedding of the complex projective spaces

has been studied by many authors [l; 3; 4; 5]. In this note we shall

deal with the nonimbeddability of the submanifolds of a complex

projective space. It was studied in [ó] in a particular case.

We denote by Pn(c) the complex projective space of complex di-

mension n. Let V2n-2 be a differentiable compact orientable submani-

fold of Pn(c) corresponding to a cohomology class vEH2(P„(c), Z).

Then the Pontrjagin class of V2n-2 is determined as follows [2]:

(1.1) j:V2n-2^Pnic),

(12)    1 + pliV2n-2) + P2^2^ + ' • *

= /*[(!  + PliPnic))   +  P2iPni¿))  +•••)(!+ V*)-l\

where pi denotes the Pontrjagin class of the dimension ii. We put as

follows :

(1.3) í = E(-l)*í*=II(l-7«),
ifc>0 a

(1.4) P  =E&=II(1-Ya)-1,
IczO a

(1.5) p-p=l.

In the case of Pn(c) we have

(1.6) p =   (1  - gl)n+\ gnEH\Pn(c),Z),

(1.7)       f=(\-ùr~\
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