CONCERNING A THEOREM OF L. K. HUA
AND 1. REINER

PETER STANEK

1. Denote by Sp(2#n) the group of all 2% by 2# matrices of rational
integers which satisfy

0o 1
(1) XHXT=H, H = ( 7 0), XT = X transpose.

This is the symplectic modular group and in [1] Hua and Reiner show
that Sp(2#) may be generated by two matrices for n=1, and by four
matrices for #>1. In this paper we improve their result and prove

THEOREM. Sp(2n) is generated by three matrices for n=2 and n=23,
and by two matrices for n> 3.

2. We define the following types of symplectic matrices:

(i) rotations
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where Q is a diagonal matrix of zeros and ones. Then [1] Sp(2n) is
generated by the set of rotations, translations, and semi-involutions.
Let E;; be the n by n matrix, all zero except for a one in the 4jth
entry. Let R;;(x) be the rotation, as above, with 4 =I+xE;;, for
1#j; Ti(x) the translation with S=xE;; and Ti;(x) the translation
with S=xE;;+xE;;.. Then the T’s commute and

(T(x)** = Ti(L k),

(Tsi(x))2* = Tii( L kx), k any integer.

If we let (U, V) be the commutator, UVU-1V-1, then
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(ii) translations

(iii) semi-involutions

@
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3) (R:j(x))¥* = Ry(+ kx), k any integer,
) (Rij(%), Rjp(3)) = Rix(xy), i p.
Now, for n>3, Sp(2n) is generated by J=Run(1)T,(1) and D:
n—1
2 Eiis1  —Enm
=]
D = n—1

E,, > Eiin
=1

We compute

5) (J, D7UD) = Ru(-1).

For indices 7 and j, n=21>j21,

(6) D7*Rij(x) D¥ = Riprjsi(x), O0=k=n—i;

() DR, jn—i(®) D = (Tiynir1,1(2))7;

(8) D *(Titn—i+11())TD* = (Tjjn—itrer, ()T, 0SSk Si—1—7;
© DX(Ty,i~i(%))TD = Ry,i-j1(—%);

(10)  D*Ryijyi(—2) D* = Rupp,ijyra(—2), 0Sks=nt+j—i—1;
(11) D 'Rapj—in(—#) D = Tayjit11(—%);

(12) D*Tayjmit1 (= 2) D* = Tupjmivrpnan(—%), 0S5k Si—j—1;
(13) DT i—f(—%) D = Rij11(%);

and

(14) D'iR;_;i1.1(x) DIt = Rii(x).
Hence Ry3(1) is obtained from D and J.

(15) (J, R13(1)) = Ras(1).

Equations (6)-(14) show D and J generate every R; 1(1), Riy1.:(1).
Repeated use of (3) and (4) will show every R;;(k), 177, k any integer
is obtained. Hence, the group generated by D and J contains every
rotation, as above, with det 4 =1.

(16) JRu(—1) = T.(1);
and
an DT, (1) D\ = Ty(1).

(18) D'T.(1)D = (T«(—1))T = P.
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(19) Ty(1)PT(1) = (I ~Bu Bu ) =5

Raah —~Eq I-EJ
But 5% is a rotation with 4 =I—2E;. Therefore, from D and J any
rotation may be had. If we let S;,;,... be the semi-involution where
Q has zeros in the #ith, jjth, kkth, « - -, positions and ones in the
other diagonal positions, then

(20) (S.',,',k, . ) (S"l-ihh- . ) = S.',j,k, EERY 8 T TYRRER
Since
(21) D*S$,D* = Sip, 0=k=n-—-1,

clearly all semi-involutions are available.
To obtain all translations,

(22) D_lRln(k)D = le(k).

(26 7)-G5)
(0 @)l Do )= )

by simultaneously interchanging rows and corresponding columns of
the symmetric matrices kE; and kE;2+kEy of Ti1(k) and Tia(k), re-
spectively, every translation is available. This completes the proof
for n>3.

Since

(23)

3. For n=2 or 3, it is now easy to see that the matrices D, Ry (1),
and T3(1) will generate Sp(2x).
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