
CONCERNING A THEOREM OF L. K. HUA
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1. Denote by Sp(2w) the group of all 2« by 2m matrices of rational

integers which satisfy

-c :>(1)    XHXT = 77, 77 = I J,        XT = X    transpose.

This is the symplectic modular group and in [l ] Hua and Reiner show

that Sp(2re) may be generated by two matrices for n= 1, and by four

matrices for n>l. In this paper we improve their result and prove

Theorem. Sp(2n) is generated by three matrices for n = 2 and n = 3,

and by two matrices for n>3.

2. We define the following types of symplectic matrices:

(i) rotations

det A = + 1,

ST = S,

/ AT      0  \

Vo     A-*)'

(ii) translations

a
(iii) semi-involutions

(    Q       '"^
\Q-I      Q    )'

where Q is a diagonal matrix of zeros and ones. Then [l] Sp(2w) is

generated by the set of rotations, translations, and semi-involutions.

Let En be the n by n matrix, all zero except for a one in the ijth

entry. Let Ra(x) be the rotation, as above, with A=I-\-xE¡i, for

iv^j; Ti(x) the translation with S = xEu; and Ta(x) the translation

with S = xEij-\-xEji. Then the 7"s commute and

(Ux))** = Ti(±kx),

(Tijix))±k = Tiji + kx),       k any integer.

If we let (U, V) be the commutator, UVU~lV-\ then
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(3) (Ríj(x))±!c = Rij(±kx),       k any integer,

(4) (Ra(x), R]p(y)) = Rip(xy), i * p.

Now, for w>3, Sp(2w) is generated by J=i?2i(l)r„(l) and D:

n-l

D =

H Ei,i+i
t=i

Enl

— Enl

n-l

H Ei,i+i

We compute

(5) (/, D-'JD) = i?3i(-l).

For indices i and j, n^i>j^l,

(6) D-tR^x)!}* = Ri+k,j+k(x),       Q^k^n-i;

(7) D-lRn,i+n-i(x)D = (Tj+n-i+ul(x))T;

(8) D-\Tj+n-i+i,i(x))TDi'= (Tj+n-i+i+k,i+k(x))T,    Qúkúi-1-j;

(9) D-KTn.i-^VD = Ri,i-m(-x);

(10) Zr-^Li-y+ii-o;)!)* = Ri+k,i-j+i+k(-x),   0£k£n+j-i-l;

(11) D-lRn+j-i,n(-x) D = r»+/_i+i,i(-a;) ;

(12) D-kTn+j-i+i,i(-x)Dk = Tn+j-i+i+k,i+k(-x),   Qúkúi-j-1;

(13) D-1Tn,i-j(-x)D = 2et-y+i.i(*)¡

and

(14) Dl-'R^i+i,i(x)D'-1 = £,,(*).

Hence i?i3(l) is obtained from D and J.

(15) (/, 2c13(l)) = -R23(l).

Equations (6)-(14) show D and / generate every i?,-,<+i(l), Ri+i,i(l).

Repeated use of (3) and (4) will show every Ra(k), i^j, k any integer

is obtained. Hence, the group generated by D and / contains every

rotation, as above, with det A = l.

(16)

and

(17)

(18)

7ic2i(-l) = J„(l);

D^Tni^D1-« = Pi(l).

£r-1Pn(l)Z) = (r1(-l))i' = p.
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(19)
(1 - Eu       Eu   \

But S\ is a rotation with A =I—2Exx- Therefore, from D and J any

rotation may be had. If we let Sij,k,... be the semi-involution where

Q has zeros in the iith, jjth, ^¿th, • • • , positions and Ones in the

other diagonal positions, then

(20) (ßtjj.,...)C5ti,iijn,...) = &./.*. •••.<i./i.*i.—

Since

(21) D-kSxD" = Sx+k,       0 á * á » - 1,

clearly all semi-involutions are available.

To obtain all translations,

(22) D-'RxMD = Txt(h).

Since

/7   S\/7   Sx\      //   S + Sl\

\0   l)\0   I )~\0       I     )'

/U        0     \/7   SWÍ/-1     0 \ _//    USU*\

\0    iUT)-l)\0   7/V  0      UT)~\0       I    )'

(23)

by simultaneously interchanging rows and corresponding columns of

the symmetric matrices kExx and kEj2-\-kE2x of Txik) and T^fc), re-

spectively, every translation is available. This completes the proof

for n > 3.

3. For n = 2 or 3, it is now easy to see that the matrices D, R2xil),

and Pi(l) will generate Sp(2w).
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