
AN INTEGRAL INEQUALITY

DALLAS BANKS

1. Introduction. The purpose of this note is to derive some integral

inequalities. In particular, we give conditions on real-valued integra-

ble functions h, g and (p defined for all xEA which imply that

(1) I g(t>dx ^  I  hd>dx
Ja Ja

or equivalently

/(g - h)<pdx =  I  f(f>dx ̂ 0
a Ja

where we set/=g —A. We show that these results are a generalization

of an inequality due to P. R. Beesack [l ] except for certain integrabil-

ity restrictions which he does not require. We use our results to ob-

tain a comparison theorem for the lowest eigenvalue of a membrane.

The method used in deriving the inequality (1) also yields a general-

ization of certain mean value theorems for integrals.

All of our results are obtained by use of the following

Lemma. Let f and (¡¡ be real-valued functions defined for xEA with f

integrable over A. Let eb be measurable over A and satisfy the condition

— oo <m^(p(x) |M< co. Define the sets

and

Then

(2)

and

(3)

A(y) = {x-.(¡¡(x) ^ y}

B(y) = A - A(y) = {x: <t>(x) < y}.

/fd>dx = m I  fdx +|     í   I      fdx \dy
A Ja J m    \J At»)        I

\  f(j¡dx = M i fdx- I     if     fdx )dy.
Ja Ja Jm   \JBW      I

Proof. Define the function F with values
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F(y)
fdx,        y E [m, M) ;

J A(y)

0, y = M.

It follows that

(4) f fd>dx = -  f   ydF(y)

since for any partition P„= {m = yo<yi< ■ ■ -<yn = M} with norm

Pn = o<e/fA\f\ dx and y¿ £ [yh-i, yt] we have

I   f f<bdx - ¿ yí [F(yk-i) - F(yk)] I g 5 f | f\ dx < e.
I * A *=-l I •' A

Integrating the right side of (4) by parts, we get

fd>dx = - yF(y)\   +  I     F(y)dy = m\  fdx+  I      ( fdx)dy,

and (2) is proved. (3) follows immediately from

(M -m) \  fdx=  f    ( f     fdx + f     fdx)dy
Ja J m     \J A(v) J B(v)        /

if we replace fm(fA(V)fdx)dy by its equivalent from (2).

2. Inequalities. In the following, we assume that/, <p andf-<p have

finite integrals over the set A. Our lemma then implies the following

results.

Theorem 1. Let — » <m^0(x) for all xEA and let fA(V)fdx^0 for

all yE[m, «>). Then the condition w/x/¿x = 0 implies that

f fcpdx ̂ 0.

Proof. Let

, .        (M, xEA(M);
4>m(x) — <

\<t>(x),       xEA-A(M).

It then follows from our hypothesis and (2) that

(5) f frudx è 0.
J A
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By the Lebesgue dominated convergence theorem

lim    I  f(t>üdx =  I  fdtdx.
tt-*a Ja Ja

Hence (5) implies the desired result.

By the same reasoning and (3) we may prove

Theorem 2. Let <p(x) ¿M<<x> for all xEA and let fB(V)fdx^0 for

all yE(— °°, M]. Then the condition Mfxfdx^O implies that

J,fíbdx ̂  0.

We may combine the results of Theorems 1 and 2 to get

Theorem 3. Let Ax= {x: </>è0} and A2 = A —Ax. If fA(V)fdx^0 for
all yE [0, oo) and fßwfdxg0 for all yE(— », 0) then

Lf(bdx ̂  0.

Proof. By Theorem 1, fAj4>dx^0. By Theorem 2, fAJ(pdx^0.
Adding these inequalities we get the desired result.

3. Remarks. Note that the conditions on/ are given only in terms

of the sets A (y) and B(y). These sets may be known even though the

function (f¡ is not. This is the case if (p is symmetric with respect to a

point and has either a positive or negative gradient in A.

As a special case of our results, we have the theorem due to Beesack

[l] when d¡-(F — G) is integrable.

Theorem (Beesack). Let F, G and (¡¡ be integrable over A and let

Ex= {x: F(x) ^C7(x)} and £2= {x: F(x) >G(x)} and suppose

(6) f Gdx ̂   i Fdx.
Ja Ja

Then if either

(7) 0 S ¿(xi) â <t>(x2)

or

(8) 0(xi) ^ 0 ^ 4>(x2)

for every pair xi, x2 such that XxEEx and X2EE2

f 4>[F - G]dx ̂ 0.
Ja
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We show that the hypothesis of this theorem is a special case of

that of Theorems 1 and 3. Let/= F— G and let y = suplSSl 0(x). Then

<pix) ̂ y for all x£7¿2- Hence Aiy) EE2 and therefore

f     fdx=  f     (F - G)dx = 0
J A t,A J A t«1A(V) •* A(y)

for all y>y. For y^y, we have

J      iF-G)dx=  f   iF-G)dx+ f (F - G)dx.
J aw Je, J e^aí»)

The first integral on the right is positive while the second is nega-

tive. If their sum is negative for some value y = yi, then it is negative

for all yèyi- But this contradicts condition (6) since Aim) —A. If (7)

is satisfied then this implies that the hypothesis of Theorem 1 is also

true.

If (8) is true then we have a special case of Theorem 3 since

F-GgO in Ei implies fB(V)iF-G)dx^0 for y<0 and F-G^O in
E2 implies /a(„)(F— G)dx^0 for y>0.

4. A comparison theorem. The following result is typical of a kind

that might be derived from our inequality.

Theorem 4. Let pix, y) and g(x, y) be non-negative real continuous

functions defined in a simply connected domain D with a piecewise

smooth boundary C such that

J J  Pix, y)dxdy = J J  qix, y)dxdy.

Consider the eigenvalue problems associated with the nonhomogeneous

vibrating membrane over D,

(9) V2« + \pix, y)u = 0,        u = 0 on C,

(10) V2» + uqix, y)v = 0, v = 0 on C.

Let z>i(x, y) denote the eigenfunction corresponding to the lowest eigen-

value ui of (10) and define

Ai%)= {ix,y):[viix,y)]2^z\.

If IIa(z)ÍP — q)dxdy ̂0, for all z = 0, then

Al   g  Ul

where Xi is the lowest eigenvalue of (9).
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Proof. Since we may choose vx so that the condition 0 á »1 ̂  1 is

satisfied, Theorem 1 and the above conditions imply

f   I   pvxdxdy ^   J   I   qvxdxdy.

Thus we have

I  I   (vxx + vxy)dxdy       I  I   (vxx + vly)dxdy

-éÏ-

I   I   qvxdxdy I   pvxdxdy

In terms of a nonhomogeneous vibrating membrane, our theorem

says that if the cumulative mass of a membrane with respect to the

sets A(z) is greater than that of the other then the first has a lower

fundamental tone. We also note that corresponding results hold for

problems of different dimensions and for other boundary conditions.

5. Mean value theorems. The mean value theorems stated below

are a consequence of our lemma. In the following, we assume that

the hypothesis of the lemma is satisfied.

Theorem 5. If 0^fA(V)fdx^fAfdx for all yE[m, M] then there
exists a number yE [m, M] such that

y j  fdx =  I  f<f>dn
J A Ja

Proof. Since fAiy)fdx S fAfdx implies JA-Awfdx = JBwfdx^O, (2)
and (3) give the inequalities

m f fdx g  f f4>dx g M f fdx.
Ja Ja Ja

If fAfdx = 0, fAf(pdx = 0 and the theorem is trivially true; if fAfdx>0,

then y= f/Jcpdx/fAfdx.

Theorem  6.  If F(y)=fA^)fdx is continuous then there is an

i)E [m, M] such that

I  f4>dx = M I      fdx + m j      fdx.
J A Jam J £(,)

Proof. Applying the one dimensional mean value theorem to the

last integral of (3) we get
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f fd>dx = M f fdx-  f     fdxiM
Ja Ja J b(v)

m)

= M I      fdx + m I      /áx.

We remark that the hypothesis of Theorem 5 replaces the condition

/2:0 in the classical first mean value theorem for the Lebesgue integral

(p. 26 of [2]). Theorem 6 is a generalization of the second mean value

theorem for the Lebesgue integral since we do not require a mono-

tonicity condition on <p (p. 104 of [2]).
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