THE ZEROS OF INFRAPOLYNOMIALS WITH PRESCRIBED VALUES AT GIVEN POINTS¹

J. L. WALSH AND O. SHISHA

- 1. Hitherto there have been considered [e.g., 1956, 1961]² infrapolynomials with some prescribed coefficients, that is to say, with prescribed values of certain derivatives at the point z=0. We now generalize this concept by prescribing values of the polynomial and of certain of its derivatives at given points z_1, z_2, \dots, z_k , and study the geometric location of its zeros in the complex plane. Thus the present results are, broadly speaking, generalizations of the preceding ones.
- 2. Let z_1, z_2, \dots, z_k be (distinct) points of the (open) complex plane, and for each $j \ (=1, 2, \dots, k)$, let there be given complex values $w_j^{(0)}, w_j^{(1)}, \dots, w_j^{(m_j)}$. Let Λ be the set of all polynomials A(z) satisfying

$$A^{(\nu)}(z_j) = w_j^{(\nu)}$$
 $\nu = 0, 1, \dots, m_j, j = 1, 2, \dots, k.$

We make the following

DEFINITION. Let n be a positive integer, and let S be a pointset in the (open) complex plane. An (n, Λ, S) infrapolynomial is an element A(z) of Λ of degree³ $\leq n$, having the property: there does not exist a polynomial B(z) belonging to Λ and of degree $\leq n$ such that

$$B(z) \not\equiv A(z),$$

 $|B(z)| < |A(z)|$ whenever $z \in S$ and $A(z) \neq 0,$
 $B(z) = 0$ whenever $z \in S$ and $A(z) = 0.$

3. We set $T = \{z_1, z_2, \dots, z_k\}$, and denote by P(z) the unique element of Λ of degree $\leq -1+M$, where $M = \sum_{j=1}^k (m_j+1)$ [cf. 1935, Chapter III, Theorem 2]. Let n be a positive integer, and S a finite (nonempty) pointset in the (open) complex plane whose (distinct) elements we denote by $\zeta_1, \zeta_2, \dots, \zeta_N$; we assume that S and T are disjoint.

Presented to the Society, April 30, 1962 under the title Infrapolynomials with prescribed derivatives at given points; received by the editors June 27, 1962.

¹ This research was supported (in part) by the U. S. Air Force through the Air Force Office of Scientific Research. Abstract, Notices Amer. Math. Soc. 9 (1962), 315.

² Dates in square brackets refer to the bibliography.

³ The degree of a polynomial is understood to be its exact degree. The polynomial 0 is assigned -1 as its degree.

- 4. THEOREM 1.4 Let $L(z) \equiv L_{N-1}z^{N-1} + \cdots + L_0$ be Lagrange's interpolation polynomial to P(z)/Q(z) on S, where $Q(z) \equiv \prod_{j=1}^{k} (z-z_j)^{m_j+1}$, and let $A_0(z) \equiv P(z) L(z)Q(z)$.
 - (a) If $N \le n M$, then there exists no (n, Λ, S) infrapolynomial.
- (b) If N=n-M+1, then $A_0(z)$ is the unique (n, Λ, S) infrapolynomial.
- (c) If N = n M + 2, then a polynomial A(z) is an (n, Λ, S) infrapolynomial if and only if it is of the form

(1)
$$A_0(z) + L_{N-1}Q(z) \sum_{\nu=1}^{N} \lambda_{\nu} \frac{g(z)}{z - \zeta_{\nu}}$$

where $\lambda_{\nu} \ge 0$, $\sum_{\nu=1}^{N} \lambda_{\nu} = 1$. Here $g(z) \equiv \prod_{\nu=1}^{N} (z - \zeta_{\nu})$.

PROOF. Assume $N \leq n-M$, and let $A(z) \equiv \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be an element of Λ . Let $B(z) \equiv A_0(z)$ if $A_0(z) \not\equiv A(z)$, and let $B(z) \equiv A_0(z) + g(z)Q(z)$ if $A_0(z) \equiv A(z)$. Then B(z) is of degree $\leq n$, it belongs to Λ , $B(z) \not\equiv A(z)$, and B(z) = 0 throughout S. Thus A(z) cannot be an (n, Λ, S) infrapolynomial. This proves (a).

Consider now the two cases: (i) N=n-M+1, and (ii) N=n-M+2, $L_{N-1}=0$. If B(z) is a polynomial of degree $\leq n$ belonging to Λ and vanishing throughout S, we can set

$$B(z) \equiv P(z) - l(z)Q(z),$$

where l(z) is a polynomial of degree $\leq n-M$ which equals P(z)/Q(z) on S. Thus $l(z) \equiv L(z)$ and therefore $B(z) \equiv A_0(z)$. Hence $A_0(z)$ (which is of degree $\leq n$, belongs to Λ , and vanishes throughout S) is an (n, Λ, S) infrapolynomial. Furthermore, if A(z) is an arbitrary (n, Λ, S) infrapolynomial, then since $A_0(z) = 0$ throughout S, $A(z) \equiv A_0(z)$. Thus we have proved (b), and under the assumption $L_{N-1} = 0$, also (c).

We observe in cases (b) and (c) that if all the values $w_j^{(\nu)}$ are zero, then $P(z) \equiv 0$, $L(z) \equiv 0$, $A_0(z) \equiv 0$, $L_{N-1} = 0$; and 0 is the unique (n, Λ, S) infrapolynomial.

Finally, we consider the case N=n-M+2, $L_{N-1}\neq 0$. We may assume N>1, since if N=1, P(z) is the unique polynomial of degree $\leq n$ belonging to Λ , and therefore P(z) is the unique (n, Λ, S) infrapolynomial, which proves the assertion of (c).

Let Λ^* denote the set of all polynomials of degree N-1 with leading coefficient 1. For every polynomial A(z) of degree $\leq n$ belonging to Λ , let $A^*(z)$ generically denote the element of Λ^* satisfying

⁴ Compare [1961, Theorems 1 and 2].

(2)
$$A(z) \equiv P(z) + [-L(z) + L_{N-1}A^*(z)]Q(z)$$
$$\equiv A_0(z) + L_{N-1}A^*(z)Q(z).$$

For every $B_1(z) \in \Lambda^*$,

$$B(z) \equiv P(z) + [-L(z) + L_{N-1}B_1(z)]Q(z)$$

is of degree $\leq n$, belongs to Λ , and satisfies $B_1(z) \equiv B^*(z)$. From (2) we have

(3)
$$A(z) = L_{N-1}A^*(z)Q(z) \quad \text{throughout } S.$$

From (2) and (3) it follows that a polynomial A(z) of degree $\leq n$ and belonging to Λ is an (n, Λ, S) infrapolynomial if and only if $A^*(z)$ is an infrapolynomial on S, i.e., [1957, Theorem 13] if and only if $A^*(z)$ is of the form $\sum_{\nu=1}^{N} \lambda_{\nu}(g(z)/(z-\zeta_{\nu}))$ ($\lambda_{\nu} \geq 0$, $\sum_{\nu=1}^{N} \lambda_{\nu} = 1$). From this, the desired result readily follows.

It may be noted that since $A_0(z) = 0$ throughout S, we may set $A_0(z) \equiv P_0(z)g(z)$ where $P_0(z)$ is a polynomial. In case (c), its degree is $\leq n - N + 1$.

5. We turn now to applications of Theorem 1(c). For the case k=1, see [1961, Theorems 6b and 10].

THEOREM 2. Under the conditions of Theorem 1(c) let two disjoint circular regions $C_1: |z-c_1| \le r_1$ and $C_2: |z-c_2| \le r_2$ (where $0 \le r_1, r_2 < \infty$) contain, respectively, the set T and the zeros of $A_0(z)$. Then C_2 together with the n-N+1 circular regions $|z-(c_1-\epsilon c_2)/(1-\epsilon)| \le (r_1+r_2)/|1-\epsilon|$, $\epsilon^{n-N+2}=1$, $\epsilon \ne 1$, contains all zeros of every (n, Λ, S) infrapolynomial.

PROOF. Let A(z) be an (n, Λ, S) infrapolynomial. By (1) and by the end of §4,

$$A(z) \equiv P_0(z)g(z) + L_{N-1}Q(z) \sum_{\nu=1}^{N} \lambda_{\nu} \frac{g(z)}{z - \zeta_{\nu}}.$$

The case $L_{N-1}=0$ is trivial; so we assume $L_{N-1}\neq 0$. Suppose that $A(z_0)=0$, $z_0\notin C_2$. We may set [1950, §1.5.1]

$$\sum_{\nu=1}^{N} \frac{\lambda_{\nu}}{z_0 - \zeta_{\nu}} = \frac{1}{z_0 - \zeta}$$

where $\zeta \in C_2$. Hence

(4)
$$(z_0 - \zeta)P_0(z_0) = -L_{N-1}Q(z_0).$$

Also, since $P_0(z)$ is of degree n-N+1, and its leading coefficient is $-L_{N-1}$, we have [1922]

$$(z_0 - \zeta)P_0(z_0) = -L_{N-1}(z_0 - \zeta')^{n-N+2} \qquad (\zeta' \in C_2).$$

Similarly, the right-hand side of (4) can be represented in the form $-L_{N-1}(z_0-z')^{n-N+2}$ with $z' \in C_1$. Thus

$$(z_0 - \zeta')^{n-N+2} = (z_0 - z')^{n-N+2}.$$

Since C_1 and C_2 are disjoint, $\zeta' \neq z'$, and therefore

$$z_0 = \frac{z' - \epsilon \zeta'}{1 - \epsilon}, \qquad \epsilon^{n-N+2} = 1, \, \epsilon \neq 1.$$

Hence [cf. 1949, Lemma (17, 2a)]

$$\left|z_0 - \frac{c_1 - \epsilon c_2}{1 - \epsilon}\right| \leq \frac{r_1 + r_2}{\left|1 - \epsilon\right|}.$$

This completes the proof.

6. If we modify Theorem 2 by assuming that (i) C_1 is $|z-c_1| \ge r_1$ (and C_2 is as before), or by assuming that (ii) C_2 is $|z-c_2| \ge r_2$ (and C_1 is as in the theorem) then we may similarly conclude (cf. loc. cit., Lemma (17, 2b)) that every zero z_0 of an (n, Λ, S) infrapolynomial which does not belong to C_2 satisfies

$$\left|z_0 - \frac{c_1 - \epsilon c_2}{1 - \epsilon}\right| \ge \frac{r_1 - r_2}{\left|1 - \epsilon\right|}, \quad \epsilon^{n-N+2} = 1, \, \epsilon \ne 1, \, \text{in case (i)},$$

and

$$\left|z_0 - \frac{c_1 - \epsilon c_2}{1 - \epsilon}\right| \ge \frac{r_2 - r_1}{\left|1 - \epsilon\right|}, \quad \epsilon^{n-N+2} = 1, \, \epsilon \ne 1, \text{ in case (ii)}.$$

7. In the special case of Theorem 2 in which k=2, $m_1=m_2=0$, $L_{N-1}\neq 0$, $P_0(z)$ must be of the first degree, say, $P_0(z)\equiv -L_{N-1}(z-a)$, and (4) may be written as

$$(z_0 - \zeta)(z_0 - a) = (z_0 - z_1)(z_0 - z_2), \quad a \in C_2.$$

Thus $z_0(z_1+z_2-a-\zeta)=z_1z_2-a\zeta$. From the fact that C_1 and C_2 are disjoint, one easily infers that the coefficient of z_0 in the last equality is not zero. Hence

$$z_0=\frac{z_1z_2-a\zeta}{z_1+z_2-a-\zeta}.$$

Thus z_0 lies in the image of C_2 under the linear transformation $\phi(z) \equiv (z_1z_2-az)/(z_1+z_2-a-z)$, and this image can be readily determined in terms of c_2 , r_2 , z_1 , z_2 and a.

8. THEOREM 3. Let the hypotheses of Theorem 1(c) hold with $L_{N-1}\neq 0$, and suppose also that all the m_i are zero. Set

(5)
$$P_0(z) / \left\{ L_{N-1} \prod_{r=1}^k (z - z_r) \right\} \equiv \sum_{r=1}^k \frac{b_r}{z - z_r}.$$

Let z_0 be a zero of an (n, Λ, S) infrapolynomial A(z).

- (a) If all the b, are ≤ 0 , then z_0 cannot lie on a line or circle L which separates T from S.
- (b) Suppose $b_j \leq 0$ for $j = 1, 2, \dots, \mu(\langle k)$ and $b_j \geq 0$ for $j = \mu + 1, \mu + 2, \dots, k$. Then z_0 cannot lie on a line or circle L which separates T_1 from $S \cup T_2$. Here $T_1 = \{z_1, z_2, \dots, z_{\mu}\}, T_2 = \{z_{\mu+1}, z_{\mu+2}, \dots, z_{k}\}.$

Note that $\sum_{\nu=1}^{k} b_{\nu} = -1$.

COROLLARY. Under the hypotheses of Theorem 3(a), if $T \subseteq D_1$ and $S \subseteq D_2$ where D_1 and D_2 are disjoint segments of a line or disjoint arcs of a circle, then $z_0 \in D_1 \cup D_2$. Likewise, under the hypotheses of Theorem 3(b), if $T_1 \subseteq D_1$ and $S \cup T_2 \subseteq D_2$ where D_1 and D_2 are as before, then $z_0 \in D_1 \cup D_2$.

[Compare 1950, §4.2.3., Theorem 2].

Theorem 3 follows by the method of the first paragraph of [1950, §4.2.1.].

9. We shall now suppose that S and T are symmetric in the x-axis.

THEOREM 4. Let the hypotheses (preceding (a)) of Theorem 3 hold, and suppose both S and T are symmetric in the x-axis, T has no point on the y-axis, and S lies in Re(z) > 0. Suppose that A(z) is a real polynomial, that $b_r \le 0$ whenever $Re(z_r) < 0$ and $b_r \ge 0$ whenever $Re(z_r) > 0$, and that $b_i = b_j$ whenever $z_i = \bar{z}_j$. Then if z_0 is nonreal, there exists (at least one) nonreal point ξ of $S \cup T$ such that z_0 lies on or within the circle tangent to the line 0ξ at ξ and to $0\bar{\xi}$ at $\bar{\xi}$.

Theorem 4 and further results can be proved by the methods of [1955] and [1961a]; compare also Marden [1949], who makes a special study of the zeros of rational functions such as the second member of (5).

BIBLIOGRAPHY

- 1922 J. L. Walsh, On the location of the roots of certain types of polynomials, Trans. Amer. Math. Soc. 24 (1922), 163-180.
- 1935 ——, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ. Vol. 20, Amer. Math. Soc., Providence, R. I., 1935.

- 1949 M. Marden, The geometry of the zeros of a polynomial in a complex variable, Mathematical Surveys, No. 3. Amer. Math. Soc., Providence, R. I., 1949.
- 1950 J. L. Walsh, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Colloq. Publ. Vol. 34, Amer. Math. Soc., Providence, R. I., 1950.
- 1955 ——, A generalization of Jensen's theorem on the zeros of the derivative of a polynomial, Amer. Math. Monthly 62 (1955), 91-93.
- 1956 J. L. Walsh and M. Zedek, On generalized Tchebycheff polynomials, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 99-104.
- 1957 T. S. Motzkin and J. L. Walsh, Underpolynomials and infrapolynomials, Illinois J. Math. 1 (1957), 406-426.
- 1961 O. Shisha and J. L. Walsh, The zeros of infrapolynomials with some prescribed coefficients, J. Analyse Math. 9 (1961), 111-160.
- 1961a J. L. Walsh, A new generalization of Jensen's theorem on the zeros of the derivative of a polynomial, Amer. Math. Monthly 68 (1961), 978-983.
- 1962 O. Shisha, An extension of Jensen's theorem for the derivative of a polynomial and for infrapolynomials, J. Res. Nat. Bur. Standards Sect. B 66 (1962), no. 2, 53-55.

HARVARD UNIVERSITY AND
NATIONAL BUREAU OF STANDARDS