CONVERGENCE, DENSITY, AND τ-DENSITY OF BOUNDED SEQUENCES¹

RALPH A. RAIMI

- 1. Let N be the set of positive integers, let E be the Banach space of all bounded real-valued functions on N, and let E^+ be its positive cone, i.e., $E^+ = \{ f \in E | f(n) \ge 0 \text{ for all } n \in N \}$. If $f g \in E^+$ we shall say $f \ge g$. If $J \subset N$, we say J has density a, or d(J) = a, if
 - $(1.1) \lim_{n} (1/n) C \{ J \cap \{1, 2, \cdots, n\} \} = a.$

(Here and henceforth C(S) means the number of elements in S.) The intimate connection between density and Cesàro summability is seen in the fact that (1.1) is identical with

(1.2) $\lim_{n} (1/n) \sum_{j=1}^{n} \chi_{J}(j) = a$, where χ_{J} is the characteristic function of J. The following well-known (e.g. [2, p. 38]) theorem is therefore not surprising.

THEOREM. Let $f \in E^+$. Then $\lim_n (1/n) \sum_{j=1}^n f(j) = 0$ (i.e., f is (C, 1) summable to 0) if and only if there exists a partition $N = J \cup K$ such that d(J) = 0 and $\lim_{n \in K} f(n) = 0$.

2. The following concept of F-summability, or almost-convergence, is due to Lorentz [4].

DEFINITION 1. A bounded sequence f is F-summable to a if

(2.1) $\lim_{n} (1/n) \sum_{j=1}^{n} f(j+k) = a$, uniformly in k.

The above definition reveals that F-summability seems to be related to the (C, 1) method. Also, there is clearly a notion of density which corresponds F-summability in just the way that ordinary density corresponds to (C, 1) summability; in agreement with the notations of [1; 5], where it is used extensively, we call it τ -density.

DEFINITION 2. Let $J \subset N$. We say $d_{\tau}(J) = a$ if

- (2.2) $\lim_{n} (1/n) C\{J \cap \{k+1, k+2, \dots, k+n\}\} = a$, uniformly in k, or, equivalently,
 - (2.3) $\lim_{n} (1/n) \sum_{j=1}^{n} \chi_{J}(j+k) = a$, uniformly in k.

One is now tempted to conjecture a strict analogy to the theorem of $\S1$, with F-summability and τ -density replacing (C, 1) summability and ordinary density. In the present paper we prove the falsity of such a conjecture; more precisely, we prove

THEOREM 1. Let $f \in E^+$. Then the statement

(2.4) There exists a partition $N = J \cup K$ such that $d_{\tau}(J) = 0$ and

Received by the editors May 15, 1962 and, in revised form, September 28, 1962.

¹ This research was supported in part by the National Science Foundation (NSF G-13987).

 $\lim_{n \in K} f(n) = 0$ implies the statement (2.5) $\lim_{n} (1/n) \sum_{j=1}^{n} f(j+k) = 0$ uniformly in k; but the reverse implication is false.

In fact it will be shown that even (4.5) below, which is a weaker assumption than (2.4), implies (2.5), but not conversely. In §3 we shall give a characterization of τ -density in terms of Banach limits, and use it in §§4 and 5 to prove the result in Theorem 1.

- 3. Let E' be the conjugate space of E. If $\phi' \in E'$ and $f \in E$, (ϕ', f) denotes the value of ϕ' at f. We shall call ϕ' a Banach limit if
 - $(3.1) \|\phi'\| = 1;$
 - (3.2) $(\phi', u) = 1$, where $u \in E$ is given by u(n) = 1 for all $n \in N$;
- (3.3) $(\phi', Tf-f)=0$ for all $f \in E$, where T is the translation operator, (Tf)(n) = f(n+1) for all $n \in \mathbb{N}$.

We denote by M' the set of all Banach limits; M' is convex and weak-* compact and nonempty [3]. For any $f \in E$, the set (M', f), i.e., $\{(\phi', f) | \phi' \in M'\}$, is a closed interval; by Lorentz' theorem [4], (M', f) reduces to a single point if and only if f is F-summable to that number. More generally,

LEMMA 1.

- (3.4) Max $(M', f) = \limsup_{n \to \infty} \sup_{k} (1/n) \sum_{j=1}^{n} f(j+k)$; and (3.5) Min $(M', f) = \liminf_{n \to \infty} \inf_{k} (1/n) \sum_{j=1}^{n} f(j+k)$.

Lemma 1 is a combination of the three lemmas of §2 of [1], for the case of the translation mapping. Equivalent expressions for the bounds of (M', f) are given in [3] and [4].

DEFINITION 3. Let $J \subset N$. Then

- (3.6) $\Delta_{\tau}(J) = \max(M', \chi_J);$
- (3.7) $\delta_{\tau}(J) = \min (M', \chi_J).$

Using Lemma 1, (3.6) and (3.7) may be rewritten

- (3.8) $\Delta_{\tau}(J) = \limsup_{n \to \infty} \sup_{k} (1/n) C\{J \cap \{k+1, k+2, \dots, k+n\}\}$; and
- (3.9) $\delta_{\tau}(J) = \liminf_{n} \inf_{k} (1/n) C \{ J \cap \{ k+1, k+2, \cdots, k+n \} \}.$ Comparing these formulas with (2.2), it is clear that $d_{\tau}(J)$ exists if and only if $\Delta_{\tau}(J) = \delta_{\tau}(J)$, and it is their common value.

We now gather some simple facts for later reference:

LEMMA 2.

- (3.10) If $f \in E^+$ and $\phi' \in M'$, then $(\phi', f) \ge 0$.
- (3.11) $d_{\tau}(J) = 0$ if and only if $(\phi', \chi_J) = 0$ for all $\phi' \in M'$.
- (3.12) If $N_i \subset N$ $(i = 1, 2, \dots, r)$, and if $d_r(N_i) = 0$ for each i, then $d_{\tau}(\bigcup_{i=1}^{\tau} N_i) = 0.$

- (3.13) If $f \in E$, $g \in E$, and if f(n) = g(n) except on a set of τ -density zero, then $(\phi', f) = (\phi', g)$ for all $\phi' \in M'$.
 - (3.14) If $N = J \cup K$ is a partition, then $\Delta_{\tau}(J) + \delta_{\tau}(K) = 1$.

PROOF. (3.10) is an easy and often remarked consequence of (3.1) and (3.2). We shall also use it in the form, if $f \leq g$, and $\phi' \in M'$, then $(\phi', f) \leq (\phi', g)$. (3.11) follows from Definition 3 and the demand that upper and lower τ -densities be equal.

To prove (3.12), notice first that $\chi_{\bigcup N_i} \leq \sum \chi_{N_i}$. By (3.11), we must show that if $\phi' \in M'$, then $(\phi', \chi_{\bigcup N_i}) = 0$. But by (3.10), $(\phi', \chi_{\bigcup N_i}) \leq (\phi', \sum \chi_{N_i}) = \sum (\phi', \chi_{N_i})$, which is 0 by (3.11) and the hypothesis. Thus $(\phi', \chi_{\bigcup N_i}) \leq 0$, but it cannot be less than 0, by (3.10), because $\chi_{\bigcup N_i} \geq 0$.

We shall prove (3.13) in the form: if h(n) = 0 except on the set $K \subset N$, with $d_{\tau}(K) = 0$, then $(\phi', h) = 0$ for all $\phi' \in M'$. But $-\|h\|\chi_K \le h \le \|h\|\chi_K$, so that by (3.10) $-\|h\|(\phi', \chi_K) \le (\phi', h) \le \|h\|(\phi', \chi_K)$. But from (3.11) we know that $(\phi', \chi_K) = 0$.

To prove (3.14): For every $\phi' \in M'$, $(\phi', \chi_J) + (\phi', \chi_K) = 1$ because $\chi_J + \chi_K = u$, the unit function of (3.2). Since max (M', χ_J) is actually achieved, it is taken on at some ϕ' at which min (M', χ_K) is achieved. (3.14) thus follows from Definition 3.

- 4. THEOREM 3. If $f \in E$, (4.1) is equivalent to (4.2), and (4.3) implies them both. If $f \in E^+$, all three statements are equivalent:
 - (4.1) $\lim_{n} (1/n) \sum_{j=1}^{n} f(j+k) = 0$, uniformly in k.
 - (4.2) (M', f) = 0.
- (4.3) For every $\delta > 0$, there exists a partition $N = J \cup K$, with $d_{\tau}(J) = 0$, such that if $n \in K$, $|f(n)| < \delta$.

PROOF. The equivalence of (4.1) and (4.2) was proved already by Lorentz; it is the direct result of the comparison of (3.4) and (3.5). To show (4.3) implies (4.2), let $\delta > 0$ be given, and J and K taken as in (4.3). Put g = f on K, g = 0 on J. Then by (3.13), $(\phi', g) = (\phi', f)$ for all $\phi' \in M'$. But $||g|| < \delta$, hence $|(\phi', g)| < \delta$, hence $|(\phi', f)| < \delta$. As this holds for all $\delta > 0$, we obtain (4.2).

Finally, if $f \in E^+$, we wish to prove (4.2) implies (4.3). Suppose, denying (4.3), there exists $\delta > 0$ such that $J = \{n \in N | f(n) > \delta\}$ does not have τ -density 0. Then by (3.11), there exists $\phi' \in M'$ such that $(\phi', \chi_J) = \alpha > 0$. But $f \ge \delta \chi_J$, hence $(\phi', f) \ge \delta \alpha > 0$, i.e., (4.2) is denied.

THEOREM 4. Let $f \in E^+$. Then $(4.4) \Rightarrow (4.5) \Rightarrow (4.6)$.

(4.4) There exists a partition $N = J \cup K$ such that $d_{\tau}(J) = 0$ and $\lim_{n \in K} f(n) = 0$.

- (4.5) For every $\alpha > 0$, there exists a partition $N = J \cup K$ such that $\Delta_{\tau}(J) < \alpha$, and $\lim_{n \in K} f(n) = 0$.
- (4.6) The function f is F-summable to 0 (i.e., any of the statements (4.1), (4.2), or (4.3)).

PROOF. (4.4) obviously implies (4.5). Given (4.5), and $\phi' \in M'$, and any $\alpha > 0$, it suffices to show $(\phi', f) < \alpha$, for then (4.2) follows. Choose, by (4.5), the partition $N = J \cup K$ such that $\Delta_{\tau}(J) < (\alpha/2||f||)$, and $\lim_{n \in K} f(n) = 0$. Then put $K = K_1 \cup K_2$, where K_1 is a finite set and $f(n) < \alpha/2$ if $n \in K_2$. Since K_1 has zero τ -density, $\Delta_{\tau}(J \cup K_1) < (\alpha/2||f||)$. Now $(\phi', f) \le ||f||(\phi', \chi_{J \cup K_1}) + (\alpha/2)(\phi', \chi_{K_2}) \le ||f||\Delta_{\tau}(J \cup K_1) + \alpha/2 = \alpha$.

5. Theorem 4 shows that (4.5) and certainly therefore (4.4) implies (2.5), and thus the first part of Theorem 1 is proved. We now construct a function $f \in E$ countering the converse assertion. This is achieved as follows.

We first devise the partition $N = \bigcup_{i=1}^{\infty} N_i$, where the elements of N_i are most conveniently given by the columns of the following table:

N_1	N_2	N_3	N ₄	N_{5}
1				
2	3			
4	5	6		
7	8	9	10	
11	12	13	14	15

and so on. Each N_i is a subsequence of N with constant second differences; from (3.8) it is easily calculable that $d_{\tau}(N_i) = 0$ for all $i \in N$.

LEMMA 3. Let $K \subset N$. If $K \cap N$, is finite for each $i \in N$, then $\delta_{\tau}(K) = 0$.

PROOF. From (3.9), it suffices to show that for every $n \in N$ there exists $k \in N$ such that $K \cap \{k+1, k+2, \dots, k+n\}$ is empty. Now, given n, the set $\widetilde{K} = (N_2 \cap K) \cup (N_3 \cap K) \cup \dots \cup (N_{n+1} \cap K)$ is finite. Let k be chosen (a) greater than all members of K, (b) a member of

 N_1 , and (c) large enough so that $k+1 \in N_2$, $k+2 \in N_3$, \cdots , $k+n \in N_{n+1}$. Then $K \cap \{k+1, k+2, \cdots, k+n\}$ is empty, because it is a subset of \tilde{K} , and yet is composed entirely of integers larger than any member of \tilde{K} .

DEFINITION OF f. Put f(n) = 1/i if $n \in N_i$.

THEOREM 5. The function f defined above is in E^+ and it is F-summable to 0, but it does not satisfy (4.5).

PROOF. Since each N_i has τ -density zero, the set $\bigcup_{i=1}^{k} K_i$ has, by (3.12), τ -density zero, for any k. Then, if $k > (1/\delta)$, the partition $N = (\bigcup_{i=1}^{k} K_i) \cup (\bigcup_{k=1}^{\infty} K_i)$ satisfies (4.3). As $f \in E^+$, (4.2) follows, i.e., f is F-summable to 0.

To show f does not obey (4.5), it suffices to take $\alpha = 1$ there. Thus suppose $\Delta_{\tau}(J) < 1$; we shall show that $\lim_{n \in K} f(n) = 0$ is false, where $N = J \cup K$ is a partition. Now, by (3.14), $\delta_{\tau}(K) > 0$. By Lemma 3, $K \cap N_i$ is infinite for some i. But f(n) = 1/i for all $n \in K \cap N_i$; hence f(n) does not converge to 0 on K.

REFERENCES

- 1. D. Dean and R. A. Raimi, Permutations with comparable sets of invariant means, Duke Math. J. 27 (1960), 467-480.
 - 2. P. R. Halmos, Lectures on ergodic theory, Chelsea, New York, 1956.
- 3. M. Jerison, On the set of all generalized limits of bounded sequences, Canad. J. Math. 9 (1957), 79-89.
 - 4. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
 - 5. R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94.

CAMBRIDGE UNIVERSITY AND UNIVERSITY OF ROCHESTER