Σ-SYMMETRIC LOCALLY CONVEX SPACES

D. E. EDMUNDS

In [1] it is shown that barrelledness and quasi-barrelledness are merely the two extreme examples of a property, called Σ -symmetry, which may be possessed by a locally convex Hausdorff topological vector space. The object of this note is to show how recent characterisations [2; 3] of barrelled and quasi-barrelled spaces may be subsumed under characterisations of Σ -symmetric spaces, and to exhibit some properties of these spaces. First we need some definitions and simple results.

1. Let E be a locally convex Hausdorff topological vector space (abbreviated to LCS in what follows), and let Σ be a class of bounded subsets of E whose union is E. Let E' denote the topological dual of E, and let E'_{Σ} be the set E' endowed with the topological of uniform convergence on the members of Σ .

DEFINITION 1. A subset of E is said to be Σ -bornivorous if it absorbs every member of Σ .

DEFINITION 2. We say that E is Σ -symmetric if any of the following equivalent conditions hold:

- (a) Every Σ -bornivorous barrel in E is a neighbourhood of zero.
- (b) Every bounded subset of E'_{Σ} is equicontinuous.
- (c) The topology induced on E by the strong dual of E'_{Σ} is the original topology of E.

The equivalence of these conditions was proved in [1]. If $\Sigma_1 \subset \Sigma_2$ it is easy to see that Σ_1 -symmetry implies Σ_2 -symmetry; the strongest restriction on E is obtained by taking for Σ the class s of all subsets of E consisting of a single point, and then Σ -symmetry is simply the property of being barrelled. If Σ is the class b of all bounded subsets of E we have the weakest Σ -symmetric property, which is that of being quasi-barrelled. Whatever the choice of Σ , the topology of a Σ -symmetric space is the Mackey topology [1].

Definition 3. E is said to be Σ -bornological if every convex Σ -bornivorous subset of E is a neighbourhood of zero.

It follows easily that E is Σ -bornological if and only if every linear map of E into an LCS F which takes members of Σ into bounded sets in F is continuous. For all choices of Σ , a Σ -bornological space is bornological.

Given any LCS E and any class Σ of bounded sets whose union is

Received by the editors August 13, 1962.

E, we may define on E a new topology 3 by taking as a fundamental system of neighbourhoods of zero the class of all convex circled Σ -bornivorous subsets of E. 3 is the finest locally convex topology for which the members of Σ remain bounded, and the space F obtained by endowing the point set E with 3 is Σ -bornological. F is called the Σ -bornological space associated with E. We note that when $\Sigma = s$, 3 becomes the finest locally convex topology on E, and when $\Sigma = b$, 3 is the associated bornological topology [4, Chapitre 3, §2, Exercice 13].

DEFINITION 4. Let E_1 , E_2 be LCS. A linear mapping u from E_1 onto E_2 is said to be almost open if for every neighbourhood U of zero in E_1 , the closure of u(U) in E_2 is a neighbourhood of zero for the Mackey topology on E_2 .

DEFINITION 5. A linear subspace Q of the dual E' of an LCS E is said to be almost closed if for every neighbourhood U of zero in E, $U^0 \cap Q$ is weakly closed in E', where U^0 denotes the polar of U.

2. The theorems in this section give characterisations of Σ -symmetric spaces. The first result includes Theorems 2.3 and 2.4 of [2] as special cases.

THEOREM 1. Let E be an LCS and Σ a class of bounded subsets of E whose union is E. Let F be the Σ -bornological space associated with E. Then E is Σ -symmetric if and only if the topology of E is the Mackey topology and either of the following conditions holds:

- (a) The identity map from F onto E is almost open.
- (b) E' is almost closed in F'.

PROOF. This follows the pattern of the corresponding proof in [2]; we give some details for convenience. To prove that Σ -symmetry implies (b), all we need show, since F has the Mackey topology, is that $E' \cap K$ is weakly closed in F' for every weakly compact convex circled subset K of F'. Since K is an equicontinuous subset of F' it is bounded in F'_{Σ} , so that $E' \cap K$ is bounded in E'_{Σ} , E'_{Σ} being plainly a topological subspace of F'_{Σ} . Since E is Σ -symmetric, $E' \cap K$ is thus an equicontinuous subset of E', and is hence relatively weakly compact in E'. Actually $E' \cap K$ is weakly compact in E', since E'_{Σ} is a topological subspace of F'_{Σ} , and K is weakly closed in F'. It follows that $K \cap E'$ is weakly closed in F'.

Condition (a) and the Mackey condition imply Σ -symmetry, since if U is a Σ -bornivorous barrel in E it is the closure in E of a neighbourhood of zero in F, so that by (a), U is a neighbourhood of zero in E.

This completes the proof of the theorem, since Pták [5] has shown that (a) and (b) are equivalent.

The next theorem is a characterisation in terms of the closed graph theorem, and contains Theorems 2.2 and 3.1 of [3] as particular cases.

THEOREM 2. Let E, Σ be as in Theorem 1. Then E is Σ -symmetric if and only if for every Banach space F the following is true:

If u is any linear map from E into F such that

- (a) u takes members of Σ into bounded sets in F;
- (b) the graph of u is closed; then u is continuous.

The proof is an obvious modification of that given in [3].

- 3. We conclude by indicating various general properties of Σ -symmetric and Σ -bornological spaces.
- THEOREM 3. (a) If E is Σ -symmetric, E'_{Σ} is quasi-complete. (b) Let Σ be a class of convex, circled, closed bounded sets whose union is E. Then if E is Σ -bornological, E'_{Σ} is complete.
- PROOF. (a) Let B be a bounded closed subset of E'_{Σ} . Since E is Σ -symmetric, B is equicontinuous and is therefore complete [4, Chapitre 3, §3, Théorème 4].
- (b) The completion of E_{Σ} is the set of all linear functionals on E whose restriction to each member of Σ is continuous [4, Chapitre 4, §3, Exercice 3]. Such functionals are bounded on the members of Σ , and since E is Σ -bornological they are continuous on E. Hence E'_{Σ} coincides with its completion.

Specialisations of this theorem give, for example, the familiar results that the dual of a quasi-barrelled space is strongly quasi-complete, and that the strong dual of a bornological space is complete.

THEOREM 4. Let $(E_i)_{i\in I}$ be any family of LCS, and for each $i\in I$ let Σ_i be a class of convex circled bounded subsets of E_i whose union is E_i . Let Σ be the class of all subsets of $E = \prod_{i\in I} E_i$ of the form $\prod_{i\in I} S_i$, $S_i\in\Sigma_i$. Then if for all $i\in I$, E_i is Σ_i -symmetric, E is Σ -symmetric when endowed with the usual product topology.

PROOF. Let B be any bounded subset of E'_{Σ} . We need to prove that B is equicontinuous. The topology of E'_{Σ} is simply the topological direct sum of the topologies of the $(E_i)'_{\Sigma_i}$ [6, Chapitre 4, §1, Proposition 7]. It follows [6, Chapitre 4, §1, Proposition 5] that B is contained and bounded in the direct sum of a finite number of the $(E_i)'_{\Sigma_i}$, i.e. $B \subset \sum_{i \in H} (E_i)'_{\Sigma_i}$, H finite. Hence for each $i \in H$ the projection of B into $(E_i)'_{\Sigma_i}$ is bounded and so is equicontinuous, since E_i is Σ_i -symmetric. B is thus an equicontinuous subset of E' [6, Chapitre 2, §15, Proposition 22, Corollaire 1], which completes the proof.

By choosing the Σ_i suitably we can obtain as special cases of this theorem the well-known results that the product of any family of barrelled (resp. quasi-barrelled) spaces is barrelled (resp. quasi-barrelled.)

THEOREM 5. Let E be Σ -symmetric and let M be a closed subspace of E. Denote by ϕ the canonical mapping $E \to E/M$, and put $\Sigma_1 = \{\phi(S) : S \in \Sigma\}$. Then E/M is Σ_1 -symmetric.

The proof is obvious.

REFERENCES

- 1. S. Warner and A. Blair, On symmetry in convex topological vector spaces, Proc. Amer. Math. Soc. 6 (1955), 301-306.
- 2. M. Mahowald and G. Gould, Quasi-barrelled locally convex spaces, Proc. Amer. Math. Soc. 11 (1960), 811-816.
- 3. M. Mahowald, Barrelled spaces and the closed graph theorem, J. London Math. Soc. 36 (1961), 108-110.
- 4. N. Bourbaki, Espaces vectoriels topologiques, Chapitres 3-5, Hermann, Paris, 1955.
- 5. V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74.
- 6. A. Grothendieck, Espaces vectoriels topologiques, 2nd ed., Sociedade de Matemática de São Paulo, São Paulo, 1958.

University College, Cardiff, Wales