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A balanced incomplete block design (BIBD) is a class of b subsets,

or blocks, from a set of v elements with k elements in each block; each

element is in r blocks and each pair of distinct elements is in X blocks.

We shall establish the following

Theorem. Let Dbea BIBD with parameters iv, b, k, r, X) = (2x+2,

4x + 2, x + 1, 2x + l, x), where x is an even positive integer. Then (i)

any two blocks of D have at least one common element ; (ii) no two blocks

of D are the same subset.

Proof. Assume the hypothesis and the falsity of either conclusion.

Construct matrix A of 2x + 2 rows and 4x+4 columns, with entries

+ 1 and — 1. The first column contains exclusively +1, and the

second column — 1. Set up one-to-one correspondences between rows

of A and elements of D ; between columns other than the first two of

A and blocks of D. Enter +1 if the element is contained in the block

and —1 otherwise. Then each row of A contains exactly 1+0

+ (2x + l) = 2x + 2 entries +1, and hence 2x+2 entries —1. Further,

each pair of distinct rows contains two +1 's in exactly 1 + 0 +x = x +1

like columns. It follows that each pair of distinct rows of A has in like

columns the ordered pairs (1, 1), (1, —1), ( —1, 1), and (—1, —1) each

x + 1 times. Select x + 1 rows corresponding to the elements of a block

which is either repeated in D or disjoint from another block of D. Let

Ao be the x+1 by 4x+4submatrixof A composed of these rows. Then

AoAq =(4x+4)7, with the identity matrix of dimension x + 1. A0 has

four columns each with all entries equal; these are the first two and

those corresponding to the pair of special blocks of D. All pairs of

unequal ± 1 entries in like columns of Ao therefore occur in the other

4x columns. Each pair of distinct rows of A 0 contains 2x+2 unlike

entries in like columns; thus the total number of pairs of unequal

entries within columns is (x + l)x- (2x+2)/2 = (x + l)2x. Among the ix

columns the average number of unlike pairs is accordingly (x + 1) 2x/4x

= (x + l)2/4. A partition of x+1 elements into two classes, with as

many as (x + l)2/4 pairs of elements not in the same class, is possible

only if x+1 is even.

There exist numerous examples of BIBD with parameters as in

the theorem and x an odd positive integer. (It is likely in fact that a

design exists for each choice of x. This would be a corollary of Paley's
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very plausible conjecture that a so-called Hadamard matrix exists

for order each multiple of four. Such a matrix has elements +1 and

all inner products zero between distinct rows (see [l] and bibliog-

raphy thereof). The converse implication might be false.) For odd x

conclusion (i) of the theorem need not be true; an example is outlined

for x = 3. Form the symmetric and cyclic BIBD with parameters

iv, b, k, r, X) = (15, 15, 7, 7, 3) determined by the difference set

0, 1, 2, 4, 5, 8, 10 (mod 15). Delete one block and all its elements

where they occur in the other blocks, leaving a BIBD with param-

eters (8, 14, 4, 7, 3). It is easily verified that the latter BIBD has a

pair (in fact seven pairs) of blocks without common element.

Whether conclusion (ii) holds for odd x appears less easy to decide;

the above proof is not valid, but the author has constructed no coun-

terexample. It is seldom if ever stated explicitly that all blocks of a

BIBD must be distinct. Examples of BIBD are constructed easily

with pairs of like blocks by choosing a quintuple of parameters for

which a solution exists, then multiplying b, r, and X by an integer

greater than one; it is rather understood that b, r, and X should not

have a common prime divisor, for this bad property means in effect

that a designed experiment would be doubled, tripled, etc., in size.

Even for b, r, X lacking a common divisor, there exist BIBDs

with pairs of like blocks. An example is presented with parameters

(10, 30, 3, 9, 2). The ten elements are designated by X, Y, Z; 0, 1, 2,

3, 4, 5, 6. The thirty triples are XYZ twice; and four classes of seven

blocks each obtained by adding (mod 7) all constants to the digits in

X01, Y02, Z04, and 124, leaving X, Y, Z fixed by the addition. Thus
the second half of the theorem is not vacuous in content.
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