REMARKS ON BALANCED INCOMPLETE BLOCK DESIGNS

E. T. PARKER

A balanced incomplete block design (BIBD) is a class of b subsets, or blocks, from a set of v elements with k elements in each block; each element is in r blocks and each pair of distinct elements is in λ blocks. We shall establish the following

THEOREM. Let D be a BIBD with parameters $(v, b, k, r, \lambda) = (2x+2, 4x+2, x+1, 2x+1, x)$, where x is an even positive integer. Then (i) any two blocks of D have at least one common element; (ii) no two blocks of D are the same subset.

PROOF. Assume the hypothesis and the falsity of either conclusion. Construct matrix A of 2x+2 rows and 4x+4 columns, with entries +1 and -1. The first column contains exclusively +1, and the second column -1. Set up one-to-one correspondences between rows of A and elements of D; between columns other than the first two of A and blocks of D. Enter +1 if the element is contained in the block and -1 otherwise. Then each row of A contains exactly 1+0+(2x+1)=2x+2 entries +1, and hence 2x+2 entries -1. Further, each pair of distinct rows contains two +1's in exactly 1+0+x=x+1like columns. It follows that each pair of distinct rows of A has in like columns the ordered pairs (1, 1), (1, -1), (-1, 1), and (-1, -1) each x+1 times. Select x+1 rows corresponding to the elements of a block which is either repeated in D or disjoint from another block of D. Let A_0 be the x+1 by 4x+4 submatrix of A composed of these rows. Then $A_0A_0^T = (4x+4)I$, with the identity matrix of dimension x+1. A_0 has four columns each with all entries equal; these are the first two and those corresponding to the pair of special blocks of D. All pairs of unequal ± 1 entries in like columns of A_0 therefore occur in the other 4x columns. Each pair of distinct rows of A_0 contains 2x+2 unlike entries in like columns; thus the total number of pairs of unequal entries within columns is $(x+1)x \cdot (2x+2)/2 = (x+1)^2x$. Among the 4xcolumns the average number of unlike pairs is accordingly $(x+1)^2x/4x$ $=(x+1)^2/4$. A partition of x+1 elements into two classes, with as many as $(x+1)^2/4$ pairs of elements not in the same class, is possible only if x+1 is even.

There exist numerous examples of BIBD with parameters as in the theorem and x an odd positive integer. (It is likely in fact that a design exists for each choice of x. This would be a corollary of Paley's

Received by the editors June 21, 1962.

very plausible conjecture that a so-called Hadamard matrix exists for order each multiple of four. Such a matrix has elements ± 1 and all inner products zero between distinct rows (see [1] and bibliography thereof). The converse implication might be false.) For odd x conclusion (i) of the theorem need not be true; an example is outlined for x=3. Form the symmetric and cyclic BIBD with parameters $(v, b, k, r, \lambda) = (15, 15, 7, 7, 3)$ determined by the difference set 0, 1, 2, 4, 5, 8, 10 (mod 15). Delete one block and all its elements where they occur in the other blocks, leaving a BIBD with parameters (8, 14, 4, 7, 3). It is easily verified that the latter BIBD has a pair (in fact seven pairs) of blocks without common element.

Whether conclusion (ii) holds for odd x appears less easy to decide; the above proof is not valid, but the author has constructed no counterexample. It is seldom if ever stated explicitly that all blocks of a BIBD must be distinct. Examples of BIBD are constructed easily with pairs of like blocks by choosing a quintuple of parameters for which a solution exists, then multiplying b, r, and λ by an integer greater than one; it is rather understood that b, r, and λ should not have a common prime divisor, for this bad property means in effect that a designed experiment would be doubled, tripled, etc., in size. Even for b, r, λ lacking a common divisor, there exist BIBDs with pairs of like blocks. An example is presented with parameters (10, 30, 3, 9, 2). The ten elements are designated by $X, Y, Z; 0, 1, 2, \dots$ 3, 4, 5, 6. The thirty triples are XYZ twice; and four classes of seven blocks each obtained by adding (mod 7) all constants to the digits in X01, Y02, Z04, and 124, leaving X, Y, Z fixed by the addition. Thus the second half of the theorem is not vacuous in content.

REFERENCE

1. Leonard Baumert, S. W. Golomb, and Marshall Hall, Jr., Discovery of an Hadamard matrix of order 92, Bull. Amer. Math. Soc. 68 (1962), 237-238.

UNIVAC Division of Sperry Rand Corporation, St. Paul, Minnesota