## IMBEDDING AND IMMERSION OF REAL PROJECTIVE SPACES

J. LEVINE

We will prove the following results on the imbeddability and immersibility of real n-dimensional projective space  $P^n$  in Euclidean space. All imbeddings and immersions are differentiable.

A. If n-1 is a power of two,  $P^n$  cannot be imbedded in  $E^{2n-2}$ .

B. If n > 7,  $P^n$  cannot be immersed in  $E^{n+2}$ .

 $C.^{1}$   $P^{9}$  can be immersed in  $E^{15}$ .

Since  $P^n$  can be imbedded in  $E^{2n-1}$  for n odd (see [4]), (A) solves the imbedding problem for  $P^n$  when n-1 is a power of two. The immersion problem for  $P^9$  is solved by (C), since a consideration of normal Stiefel-Whitney classes shows  $P^9$  cannot be immersed in  $E^{14}$ . The immersion problem for  $P^n$ , n < 9, has already been solved (see 7.1 of [2]).

PROOF OF A. We will make use of the techniques introduced by Massey in [5] and [6]. This result is, in a sense, optimal for this method. Let M denote  $P^n$ . We will need to know that the normal Stiefel-Whitney classes of M,  $\bar{w}_1$  and  $\bar{w}_{n-3}$ , are zero and nonzero, respectively, when n-1 is a power of two.

Suppose M is imbedded in  $E^{2n-2}$ . Let N be the normal (n-3)-sphere bundle and  $p: N \rightarrow M$  the bundle projection. Recall the following information about the mod 2 cohomology of N (see [6] for details and references).

- (i) There is a subring A of  $H^*(N)$  with the following properties:
  - (a) A is closed under cohomology operations.
  - (b)  $A^{2n-8}=0$ .
- (c) For every x in  $H^r(N)$ , 0 < r < 2n-3, there are unique elements  $x_1$  in  $H^r(M)$  and y in  $A^r$  such that:

$$x = p^*(x_1) + y.$$

- (ii) There is a unique element a in  $A^{n-\delta}$  with the following properties:
- (a) For every x in  $H^*(N)$ , there are unique elements  $x_1$ ,  $x_2$  in  $H^*(M)$  such that:

$$x = p^*(x_1) + a \cup p^*(x_2).$$

Received by the editors April 19, 1962 and, in revised form, July 14, 1962.

<sup>&</sup>lt;sup>1</sup> I have been informed by B. J. Sanderson that he has immersed  $P^n$  in  $E^{2n-3}$ , for n odd.

(b) In the formula of (a), if  $x = Sq^r(a)$  then  $x_2 = \bar{w}_r$ , the rth normal Stiefel-Whitney class of M.

Let u be the generator of  $H^1(M)$ . By (i-c) we can define an element k in  $\mathbb{Z}_2$  by the formula:

(1) 
$$a \cup p^*(u) + kp^*(u^{n-2}) \in A^{n-2}$$
.

We now apply  $Sq^1$  to (1). By (i-a), (ii-b) and  $\bar{w}_1 = 0$ , we obtain:

(2) 
$$a \cup p^*(u^2) + kp^*(u^{n-1}) \in A^{n-1}$$
.

By multiplying (1) and (2) and applying (ii-b) with  $\bar{w}_{n-3} = u^{n-3}$ , and (i-b), we obtain:

(3) 
$$a \cup p^*(u^n) + 2ka \cup p^*(u^n) = 0.$$

Since 2k=0, we find that  $a \cup p^*(u^n) = 0$ . But, by (ii-a), this is a contradiction and (A) is proved.

PROOF OF B. We first prove a lemma.

Lemma. Every 2-plane bundle B over  $P^n$  decomposes into a Whitney sum of line bundles, if n > 2.

PROOF. Suppose  $w_2(B) = 0$ .

Since  $H^2(P^n) = \mathbb{Z}_2$ , if B is orientable, this is the first obstruction to a cross-section. If B is nonorientable, the obstruction is in  $H^2(P^n)$  with twisted integer coefficients, which is zero. Since all the higher obstructions are zero, B has a cross-section and the lemma follows. If  $w_2(B) \neq 0$ , then, by the Wu formula:

$$Sq^{1}w_{2}(B) = w_{1}(B)w_{2}(B) + w_{3}(B) \text{ (see [8])}$$

and  $w_3(B) = 0$ , we see that  $w_1(B) = 0$ . Now consider  $B \otimes L$  where L is the nontrivial line bundle over  $P^n$ . By formula III of 4.4.3 of [3], which holds, by analogous considerations, for  $w_i$ :

$$w_2(B \otimes L) = w_2(B) + w_1(B)w_1(L) + w_1(L)^2$$
.

Therefore  $w_2(B \otimes L) = 0$  and  $B \otimes L$  decomposes into line bundles. But then so does  $B = (B \otimes L) \otimes L$ .

Suppose  $P^n$  is immersed in  $E^{n+2}$ . By the lemma, the normal bundle is a sum of line bundles. Thus the *stable* normal bundle of  $P^n$  is a multiple of L, kL, where k=0, 1 or 2. Since the stable tangent bundle of  $P^n$  is (n+1)L, (n+k+1)L is the trivial bundle. But this contradicts the computations of Adams [1].

PROOF OF C. Let  $P^8$  be immersed in  $E^{k+8}$  for k large, with normal k-plane bundle B. The group of stable vector bundles over  $P^n$  has been calculated by Adams [1]; for n=8, it is the cyclic group of

order 16 generated by L. It is well known that the stable tangent bundle of  $P^8$  is 9L; therefore the stable class of B is 7L. This means B is the Whitney sum of seven copies of L and a trivial bundle, if k is large enough. Then it follows from 6.4 of [2] that there is an immersion of  $P^8$  in  $E^{15}$  with normal bundle a Whitney sum of seven copies of L. Considering one of these copies of L as a tubular neighborhood of  $P^8$  in  $P^9$ , we can immerse  $P^9-x$  in  $E^{15}$ . By 3.9 of [2], the obstruction to extending this immersion to  $P^9$  in  $E^{15}$  is an element of  $\pi_8(V_{15.9})$ , which is zero by [7]. This completes the proof of (C).

## **BIBLIOGRAPHY**

- 1. J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632.
- 2. M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
- 3. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Springer, Berlin, 1956.
- 4. H. Hopf, Systeme symmetrischer Bilinearformen und euklidische Modelle der projectiven Räume, Vierteljschr. Naturforsch. Ges. Zürich, 1940.
- 5. W. Massey, On the cohomology ring of a sphere bundle, J. Math. Mech. 7 (1958), 265-289.
- 6. ——, On the imbeddability of the real projective spaces in Euclidean space, Pacific J. Math. 9 (1959), 783-789.
- 7. G. F. Paechter, On the groups  $\Pi_r(V_{n,m})$ . I, Quart. J. Math. Oxford Ser. 7 (1956), 249-268.
- 8. W. T. Wu, Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918-920.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY