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1. Introduction. Operating in Euclidean three-space, E3, with

u, v, w designating vectors and e, t, n designating unit vectors, let

vip) be a continuous vector field defined in the neighborhood of the

point po. Also let C„ipo, r) represent the circle with center p0 and

radius r, lying in the plane through po normal to n, oriented by the

usual right-hand rule. Define the upper circulation per unit area of v

at po in the direction n, designated by D*vip0), as follows:

D„vipo) = lim sup (xr2)-1 I vtds,

where / designates the unit tangent and ds the differential of arc

length. Similarly define the lower circulation per unit area, D*nvipo),

using lim inf. If Dnvipo) =D*vipo) and both expressions are finite,

designate this common value by Dnvipo) and call it the circulation

per unit area of v at po in the direction n.

The curl of v is said to exist at the point po if Dnvipo) exists for

every unit vector n and if, furthermore, there exists a vector w such

that w-n = DnVÍpo) for every unit vector n, w is then called curl vipo).

The curl of v will be said to exist uniformly at po, if curl vipo) exists

and if, furthermore,

lim iwr2)-1 I vtds = m-curl vipo),
'-"> Jc„(p0,r)

uniformly in n.

It is clear that if vip) is in class C1 in a neighborhood of the point

po, then the curl of v exists uniformly at the point po.

The above definitions are classical and can be found in most of the

standard books on advanced calculus. In particular, pictorial illustra-

tions of the above discussion can be found in [l, p. 351; 2, p. 278].

The following theorem will be proved in this paper:

Theorem. Let vip) be a continuous vector field defined in an open set

REE3. Suppose there exists three mutually orthogonal unit vectors

eu e2, ez, and a constant K such that \ D*vip) \ ^K and | D*e.vip) \ ^K

for p in R andj= 1, 2, 3. Then curl v exists uniformly almost everywhere

in R.
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The above theorem is the vector analogue of the classical theorem

of Rademacher concerning Lipschitz functions and total differentials.

(See [3, p. 310] or [6, p. 272].)

2. Proof of theorem. With no loss in generality, we can assume that

E3 has the usual Cartesian coordinate system with p in E3 given by

p = (xi, x2, x3) and that e¡ is the unit vector e¡ in the direction of the

xy-axis,/= 1, 2, 3. Furthermore, we can assume that P is the interior

of the unit ball in E3. Then it follows from the proof in [5] (by read-

ing (rasa disc instead of a two-simplex) that with K as in the hypoth-

esis of the theorem that

(1) vtdsI    -*/C„(p,r)

g 3Kirr2       if Cn(p, r) C R-

The first lemma we prove is the following:

Lemma 1. D*v(p) and D*nv(p) are bounded (by 3K) Borel measura-

ble functions in R which are equal almost everywhere in R.

Let A = {p\D*v(p) <a}, and let B(p, r) be the closed three-ball

with center p and radius r. Fix ri with 0 <ri < 1, and let k be an integer

greater than (1 — ri)"*1. Then denote by Ak the following set:

Ak =   \p\ (irr2)'1 f vtds
i J C„(p,r)

^ a - k-1 for 0 < r ^ k~l and p in B(0, r,)l •

Since for fixed r^k-1, (irr2)~lfcn{v.<-)'V'tds is a continuous function

of p in 73(0, ri), we conclude that Ak is a closed set. But then AB(0, rx)

is an P„-set, and consequently D*v(p) is a Borel measurable function

in P. A similar proof shows that D*nv(p) is a Borel measurable func-

tion in P.

From (1), it follows that both D*nv(p) and D*v(p) are bounded by

3K in P. To show that D*nv(p) =D*v(p) almost everywhere in P, set

u(p)=v(p)-[n-v(p)]n, and let C„(po, n) ER- Then with D„(po, ri),

designating the closed disc having Cn(po, r{) as its boundary, we ob-

serve that u(p) can be considered as a two-dimensional vector field

defined on the two-dimensional set D„(p0, rx). Furthermore, it follows

from (1) that for p in Dn(po, ft), Hm supr..o inr2)~l\ fcn(,P,T)U • tds\ g3A.

Consequently, by [4, Theorem 2], for almost every p in D„ipo, fi),

(2)       lim sup (Trr2)"1 | u-tds = lim inf iirr2)'1 I u-tds.
>—° J C„<p,r) r-0 J C„(p,r)
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But D*vip) and D*nvip) are respectively the right and left sides

of (2), and the conclusion of the lemma therefore follows from

Fubini's theorem and the fact that D*vip) and D*nvip) are Borel

measurable functions in R.

Next, for fip) a Borel measurable function defined almost every-

where in R which is, furthermore, essentially bounded on every com-

pact subset of R, we define for p in 5(0, r) where 0<r<l and

0<A<l-r, the iunction fhip) = iiirhz/3)-lfBlo.h)fip+q)dq. We say

that fip) is mean-continuous at po if fip) is defined at po and if

fhipo)—>fipo) as h—>0. It is clear that for fixed h, fhip) is continuous

in BiO, r). Furthermore, it is well known that if fip) is continuous in

R, then fhip) is in class C1 in 5(0, r).

We next define for p in 5(0, r), with h and r as above, the vector

field Vhip) to be the vector field whose ßyth component at p is

[v-e,]hip), j — 1, 2, 3. It is clear that vhip) is in class C1 in 5(0, r).

Also, the following lemma prevails.

Lemma 2. For p0 in BiO, r), Dnvhip0) = [Dnv]hip0).

We first observe that for p in 5(0, r+n), where r+ri+h<l,

Vhip) -tip) = i±irW/3)-1fB(.o,h)vip+q) -t(p)dq. Consequently,

f vhip)-tip)dsip)
J C„(po,ri)

(3)

= (4XÂV3)-1 f f v(p + q)-tip)dsip)\ dq.
J B(0,h)   LV Cntp<,,r¡) J

Dividing both sides of (3) by Trr2 and passing to the limit as ri—>0,

we obtain DnVhipo) from the left side of (3). From (1), Lemma 1,

and the Lebesgue bounded convergence theorem, we obtain [Dnv]hipo)

from the right side of (3), and Lemma 2 is established.

By Lemma 1, Dnvip) is a bounded Borel function defined almost

everywhere in R. Set Qn={p\p in R and Dnv is mean-continuous at

p}. By Lebesgue's theorem, R — Qn is a set of Lebesgue measure zero.

The following lemma then holds:

Lemma 3. For p0 in QeiQe2Qe,Qn,

3

(4) Dnvipo) = Hn-e¡DejvÍpo).
i-l

Since for h small, vhip) is in class C1 in a neighborhood of po,

DnVhipo) =n-curl vhipo) = H*=i n-ejDejvh(po). But then by Lemma 2,
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(5) [DnvUipo) = Z»-«i[D<iv]k(po).
i-1

Using the fact that p0 is in Qe¡Qe,Qe¡Qn, (4) follows immediately

from (5) on passing to the limit as h—>0.

By a spherical lune, a, we shall mean one of the four possible two-

dimensional closed sets determined by two great circles on a sphere.

\a\ will designate the two-dimensional area of a, and do- will be

oriented with respect to the outer normal of the sphere.

Lemma 4. Let aEdB(p, r) where B(p, r) ER- Then with K as in the

hypothesis of the theorem, \fdav-tds\ ^3K\a\.

Lemma 4 follows in the same manner as the analogous result was

established for simplices in [5, p. 85]. We need only observe that

on setting Qx = QeiQe3Qet, there exists a sequence of spherical lunes

{<*,-}£.! contained in a small neighborhood of <r with the following

properties: (a) |<r,-| —»|<r|, (b) fa<r.v-tds-+fg,v-tds and (c) the two-

dimensional measure of QxO¡ on o¡ is the same as 1071.

Before proving the theorem, we note that if n and no are two unit

vectors with \n — n0\ <e, e>0 and small, and if ax and a2 are the two

smaller spherical lunes determined by Cn(p, r) and Cn<i(p, r), then

(6) I oi|   ^ eirr2       for* = 1,2.

We now prove the theorem. Select a countable set {»/}¿+i of unit

vectors with nj = e¡ for/= 1, 2, 3, which is dense in the set of all unit

vectors, and set Q= Hjli Q»j- Clearly, P — Q is of Lebesgue measure

zero.

Next, let p be given in Q and define w(p)= Z*-i D>j°iP)ej- We
propose to show that given e>0 and small, there exists r0 (which de-

pends on p and e) such that if 0 <r ^r0, then for every unit vector n

(7) -1 I vtds -
J Cn(p,T)

(7rr2)-1 I vtds — n-w(p) <(9K+l)t,

where K is the constant in the hypothesis of the theorem.

To do this, choose M so large that {«jj^-i constitutes an e-dense

set. By Lemma 3 and the choice of Q, there exists an r0 such that if

0<r^r0,

(8) (irr2)-1 I vtds — nyw(p)
J Cnj(p,r)

< e       for/ = 1, • ■ • , M.

Next, given a unit vector n, choose n, such that \n — n,\ <«. If
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cri and o2 are the spherical lunes in (6) with n¡ playing the role of no,

we then obtain from (6) and Lemma 4, that for 0<r^ro,

/v • tds —  I f'^J  = E v
Cn{p,r) J Cn.(p,r) k=.l\Jdt¡:

■tds è ÓK-Kr2t.
Cnj(.p,r)

But then from (8), we see that for 0<r^r0 the left side of (7) is

majorized by (67i + l)e+| (n — n¡) ■ w(p) ] which in turn is majorized

by (9K + l)e. The inequality in (7) is consequently established, and

the theorem is proved with curl v(p) =w(p).

In closing, we remark that if 5 is a simple, oriented, C1 surface

contained in R and S — SQ is of measure zero with respect to the

natural measure on 5, it is not difficult to see from [4] and [5], that

Stokes' theorem holds for 5 with respect to v and curl v.
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