ALGEBRAS SPLIT BY A GIVEN PURELY INSEPARABLE FIELD

KLAUS HOECHSMANN

1. Let K be a field of characteristic $p \neq 0$. By a p-algebra we mean a central simple algebra over K whose dimension is a power of p. Although it is known that such an algebra always has a purely inseparable (over K) splitting field E, the role played by E in the structure of the algebra has not been clear. In this paper, we intend to show that essentially all p-algebras split by E are obtained by a natural composition of two constituents: a certain purely inseparable field \hat{E} containing E and any abelian normal extension N of E whose Galois group is related, in a manner to be described, to the structure of E. We must dwell a little on the nature of these ingredients.

Consider a subgroup X of the multiplicative group E^* of E such that X contains the multiplicative group K^* of E. Such a group will be called $\operatorname{regular}$, if any system of representatives of E^* modulo E^* is linearly independent over E^* . E^* itself is called $\operatorname{regular}$ if it is additively generated by some regular subgroup of E^* , which in this case will be called a $\operatorname{maximal regular}$ subgroup. Just below the corollary for Theorem 2 in [2], it was shown that every finite purely inseparable extension E^* can be further extended to a regular one E^* with the same exponent over E^* and also finite. In what follows, we require E^* to be regular. The field originally given may have to be enlarged to fulfill this condition, just as a separable field is extended to a normal one in the theory of crossed products. We assume, therefore that E^*

It follows at once from Theorem 1 of [2] that the group $G(X) = X/K^*$ associated with a maximal regular subgroup X of E^* is independent of X. There is thus a unique p-group G attached to E. The group X is an extension of K^* by G. Hence with the selection of a maximal regular group X we obtain a cohomology class $\tilde{X} \in H^2(G, K^*)$. For the sequel let X be fixed.

As for N, it will be a normal extension of F with Galois group $\Gamma \simeq G$. However, N need not be a field; in general it may be a direct sum of fields

$$N = N_1 \oplus \cdots \oplus N_n$$

with a "T-group" Γ of automorphisms, as defined in [1], i.e., a group of automorphisms satisfying the following three conditions.

Received by the editors July 6, 1962.

- I. If $\sigma \in \Gamma$ and σ keeps the elements of N_i fixed (for any i), then $\sigma = 1$.
 - II. Γ is transitive on the set of fields N_1, \dots, N_n .
- III. If $a \in N$ and a is fixed under all elements of Γ , then $a \in K$. Teichmüller [3] proved that for $\alpha \in H^2(\Gamma, N^*)$ the crossed product (N, Γ, α) defined in the usual way is central simple over K and has all the usual properties. The pair (N, Γ) will be called a *normal ring*. We can now state our main theorem.

THEOREM 1. Let A be a simple algebra of dimension $(E:K)^2$ over its center K. Then E splits A if and only if $A \simeq (N, \Gamma, \tilde{X})$ for some normal ring (N, Γ) with $\Gamma \simeq G$.

Here X is interpreted as an element of $H^2(\Gamma, K^*)$ as it can be because of the isomorphism between G and Γ .

Before attempting to prove Theorem 1, we shall reformulate it to bring it into better accord with the crude version given at the outset. Given a normal ring (N, Γ) , consider an injection $\phi \colon \Gamma \to E^*/K^*$ such that $\bigcup_{\sigma \in \Gamma} \phi(\sigma)$ is a regular subgroup of E^* (it is automatically maximal). The regularity of E guarantees the existence of such injections, since $\Gamma \simeq G$.

On the vector space $E \otimes_K N$, a multiplication is defined by demanding that

(1)
$$(x \otimes u)(y \otimes v) = (xy \otimes u^{\sigma}v)$$
 if $y \in \phi(\sigma)$.

The resulting algebra will be denoted by $E \otimes_{\phi} N$.

THEOREM 1'. The class of algebras of the form $E \otimes_{\phi} N$ (for fixed regular E) coincides with that of p-algebras containing E as a maximal commutative subring.

It is easily verified that the definition of $E \otimes_{\phi} N$ makes it isomorphic to (N, Γ, \tilde{X}) for suitable X. Indeed, suppose $\phi: \sigma \rightarrow x_{\sigma}K^*$. The nature of ϕ is such that the set $\{x_{\sigma} | \sigma \in \Gamma\}$ is a basis of E over K, and hence a basis of $E \otimes_{\phi} N$ over N. If we write x and u instead of $(x \otimes 1)$ and $(1 \otimes u)$, respectively, the elements of $E \otimes_{\phi} N$ are of the form

$$\sum_{\sigma\in\Gamma}x_{\sigma}u_{\sigma},$$

where the u_{σ} are arbitrary coefficients from N. The commuting rule (1) appears as:

$$x_{\sigma}u = u^{\sigma}x_{\sigma}$$
.

¹ Often called "Galois algebra" and extensively studied in [5].

Finally, let $X = \bigcup_{\sigma \in \Gamma} x_{\sigma} K^*$. X is a maximal regular subgroup of E^* , which can be thought of as an extension of K^* by either G or Γ . Taking the latter point of view, we may regard the factor set

$$\alpha(\sigma, \tau) = \frac{x_{\sigma}x_{\tau}}{x_{\sigma\tau}}, \quad (\sigma, \tau \in \Gamma),$$

as a representative of the cohomology class \tilde{X} .

We have exhibited the structure of a crossed product (N, Γ, \tilde{X}) in $E \otimes_{\phi} N$. For reasons of dimension and the simplicity of crossed products,

$$E \underset{\phi}{\otimes} N \simeq (N, \Gamma, \tilde{X}).$$

Since E is obviously contained in $E \otimes_{\phi} N$ (as the subring $E \otimes K$), we have also proved the "if" part of Theorem 1.

2. For proving the second and more important part of Theorem 1, the theory of differential extensions, as worked out in [1], is needed. We recall briefly what it is about. Let Z be a finite extension field of K such that $Z^p \subseteq K$, d be a derivation of Z into Z, whose kernel is precisely K, and f(x) be the minimal polynomial of d over K. Given a central simple Z-algebra A, we can extend d to a derivation \bar{d} of A into A and find an element c in the kernel of \bar{d} such that $ca-ac=f(\bar{d})(a)$ for all $a\in A$. The K-algebra (A, \bar{d}, c) , generated by A and a symbol u such that

(2)
$$ua - au = \bar{d}a$$
, for all $a \in A$,

and

$$f(u) = c$$

is called a differential extension of A by \bar{d} . It turns out that (A, \bar{d}, c) is central simple over K and contains A as the centralizer of Z and that, conversely, every such K-algebra is of the form $(A, \bar{d}, c+\gamma)$ with $\gamma \in K$. It is emphasized that d and \bar{d} can be chosen in various ways; in particular, d can always be chosen to be regular, i.e., such that its proper vectors form a maximal regular subgroup of Z^* . (Note that Z, being of exponent p, is automatically regular.)

Now let A be a crossed product of the normal ring (M, Δ) over $Z: M = M_1 \oplus \cdots \oplus M_m$, each M_i being a separable extension field of Z and Δ being a T-group of automorphisms relative to Z. Let $\alpha \in Z^2(\Delta, M^*)$ be a 2-cocycle defining A. We now impose a rather severe condition, namely, that the values $\alpha(\sigma, \tau)$ lie in some maximal

regular subgroup of Z^* . It is well known that a derivation d of Z into Z can be constructed whose group of proper vectors coincides with any given maximal subgroup of Z^* , in particular the one containing the values $\alpha(\sigma, \tau)$ (see, for example, [1, Proposition 1.3]). This derivation d will be extended to A as follows.

Since all elements of M are separable over Z, d has a unique extension to M. If $\{y_{\sigma} | \sigma \in \Delta\}$ is the usual M-basis for the crossed product A, the extensions \bar{d} such that $\bar{d}(M) \subseteq M$ are defined by $dy_{\sigma} = y_{\sigma}\delta(\sigma)$, with $\delta: \Delta \to M$ satisfying

(4)
$$d(\alpha(\sigma, \tau))/\alpha(\sigma, \tau) = \delta(\sigma)^{\tau} - \delta(\sigma\tau) + \delta(\tau)^{2}$$

The function $\beta: (\sigma, \tau) \rightarrow d(\alpha(\sigma, \tau))/\alpha(\sigma, \tau)$, as the "logarithmic derivative" of the multiplicative cocycle α , is an additive cocycle, and (4) can be satisfied by setting

(5)
$$\delta(\sigma) = \sum_{\rho \in \Delta} \beta(\rho, \, \sigma) a^{\rho \sigma}$$

with any $a \in M$ for which $\sum_{\rho \in \Delta} a^{\rho} = 1$. If M were a field, the existence of such an element a would be well known; in our case it can be found as follows. Let Δ_1 be the subgroup of Δ leaving M invariant. Clearly, $\Delta = \sigma_1 \Delta_1 \cup \sigma_2 \Delta_1 \cup \cdots \cup \sigma_m \Delta_1$, where $M_1^{\sigma_i} = M_i$. Furthermore, Δ_1 induces on each subfield M_i its Galois group over Z. We take an a_1 from M_1 whose trace is 1. Then $a_1^{\sigma_i}$ has trace 1 in M_i ; more precisely, if the elements of M are represented in the form (x_1, \cdots, x_m) with $x_i \in M_i$, we have

$$\sum_{\rho\in\Lambda} (a_1, 0, \cdots 0)^{\sigma_{1\rho}} = (0, \cdots, 1, 0 \cdots)$$

with the 1 in the ith place. Hence

$$\sum_{a\in\Delta} (a_1, 0, \cdots 0)^p = \sum_{i=1}^m (0, \cdots, 1, 0 \cdots) = 1.$$

The preceding paragraph is entirely independent of the condition imposed on α , whose only purpose is to insure that certain things are separable over K. For, if a_1 is not K-separable, a_1^p will surely be, and

$$\sum_{\rho \in \Delta} \left(a_1^p\right)^{\rho} = \left(\sum_{\rho \in \Delta} a_1^{\rho}\right)^p = 1.$$

In any case, a_1 can be chosen separable over K. Since each $\alpha(\sigma, \tau)$

² This observation was made by G. Hochschild (Trans. Amer. Math. Soc. 80 (1955), 146).

is a proper vector of the regular derivation d, each of the quotients $\beta(\sigma, \tau)$ is an element of K. Therefore, the function δ defined by (5) maps Δ into the maximal K-separable subring M' of M. Now we can state

Theorem 2. In the notation introduced above, let $B = (A, \bar{d}, c)$ be any differential extension of the crossed product A. Then B is again a crossed product. More precisely, for suitable choice of \bar{d} , the ring N generated in B by M' and an element u satisfying (2), is a direct sum of fields; the inner automorphisms induced in B by certain proper vectors of \bar{d} (\bar{d} being regarded as a linear transformation of A over M') define a T-group of automorphisms on N. N is a maximal commutative subring of B.

PROOF. Let \bar{d} be defined as an extension of the regular derivation d of Z, exactly as above. B is generated by A and the element u mentioned in the theorem, the latter satisfying the polynomial equation (3). Our first aim is to modify our choice of \bar{d} so as to make c lie in M'.

Note that $c \in M$, because $ca - ac = f(\bar{d})(a) = 0$, for $a \in M$, and because M is maximal commutative in A. If c is not separable over K, replace \bar{d} by \bar{d}^p and u by u^p . It is easily checked that this change leaves all our conventions concerning d intact. Now $f(u^p) = c^p$, which is K-separable.

Assume $c = c_1 + \cdots + c_m$, $c_i \in M'_i$. Then

$$N = M'[u] \simeq M'[x]/f(x) - c \simeq \bigoplus_{i=1}^{m} M'_{i}[x]/f(x) - c_{i}.$$

Let $f(x) - c_i = \phi_{i1}(x) \cdot \cdot \cdot \phi_{ir}(x)$ be a factorization into irreducible polynomials (it will become apparent that the number r is the same for each i). Setting

$$N_{ij} = M_i'[x]/\phi_{ij}(x),$$

we have, since $\phi_{i1}(x)$, \cdots , $\phi_{ir}(x)$ are all distinct because of the separability of f(x),

$$N \simeq \bigoplus_{i=1}^m N(i_1 \oplus \cdots \oplus N_{i_r}),$$

as claimed.

For an element $a \in A$, let Ia denote the map induced on N by the inner automorphism $b \rightarrow a^{-1}ba$ of B.

Let $\{y_{\sigma} | \sigma \in \Delta\}$ be an *M*-basis of *A* such that $xy_{\sigma} = y_{\sigma}x^{\sigma}$ for all $x \in M$. Finally denote by *W* the group of proper vectors of *d* in Z^* .

We shall prove that the maps $I(y_{\sigma}z)$ with $z \in W$ form a T-group of automorphisms of N. In fact

$$u(y_{\sigma}z) - (y_{\sigma}z)u = \bar{d}(y_{\sigma}z) = y_{\sigma}z(\delta(\sigma) + \lambda),$$

where λ is the proper value belonging to z, so that

$$I(y_{\sigma}z): u \to u + \delta(\sigma) + \lambda.$$

For $x \in M$, $I(y_{\sigma}z): x \to x^{\sigma}$. $I(y_{\sigma}z)$ is therefore an automorphism of N.

Before verifying conditions I, II, and III for a *T*-group, we make an observation:

 $M_i = Z \otimes_K M_i'$, and the restriction of \bar{d} to M_i is a regular derivation of M_i over M_i' with the same proper values and vectors as d. Therefore we can use Theorem 6.1 of [1] to conclude that the maps $\{Iz | z \in W\}$ form a T-group of automorphisms on $M_i'[u]$.

- (II) To map N_{11} onto N_{ij} we use $I(y_{\sigma}z)$ where $\sigma: M_1 \rightarrow M_i$, and hence $M'_1 \rightarrow M'_i$. Then Iy_{σ} maps $M'_1[u]$ onto $M'_i[u]$, and hence N_{11} onto some N_{ik} . Since $I(W) = \{Iz | z \in W\}$ is transitive on the fields N_{i1}, \dots, N_{ir} in $M'_i[u]$, the desired $z \in W$ can be found.
- (I) Suppose $\tau = I(y_{\sigma}z)$ leaves N_{11} elementwise fixed. There exist $z_i \in W$ $(i=1 \cdots r)$ such that $\zeta_i = Iz_i$ maps N_{11} onto N_{1i} . Since W is in the center of A and $y_{\sigma} \in A$, each ζ_i commutes with τ . Let $x \in M'_1[u]$, $x = x_1 + \cdots + x_r$ with $x_i \in N_{1i}$.

$$x^{\tau} = \sum_{i=1}^{r} x_{i}^{\tau} = \sum_{i=1}^{r} (x_{i}^{\zeta_{i}^{-1}})^{\tau \zeta} = x.$$

Thus τ is identity on $M_1'[u]$, in particular on M_1' . Since z commutes with M_1' , σ itself is identity on M_1' , hence on M_1 , hence on all of $M: \sigma = 1$ and $\tau = Iz$. Finally $\tau = 1$, because the automorphisms I(W) form a T-group on $M_1'[u]$ over M_1' .

(III) If $x \in N$ is fixed under I(W), it must be in M'. If it is fixed under Δ as well, it must be in K, since Δ is a T-group on M over Z, hence on M' over K.

We have already observed that the elements $\{y_{\sigma}z \mid \sigma \in \Delta, z \in W\}$ are proper vectors of \bar{d} :

$$\bar{d}(y_{\sigma}z) = y_{\sigma}z(\delta(\sigma) + \lambda).$$

Finally, we recall that the degree of f(x) equals (Z:K). Hence (N:K)=(M'[u]:K)=(M':K)(Z:K). This is precisely the dimension (M:Z)(Z:K) of a maximal commutative subring of the differential extension B. Theorem 2 is now established.

REMARK. It is easy to describe the algebra B of Theorem 2 without referring to the structure of a differential extension. Given

 $A = (M, \Delta, \alpha)$ and having chosen \bar{d} and c in such a way that $c \in M'$ and $dy_{\sigma} = y_{\sigma}\delta(\sigma)$, as before, we can define a normal ring (N, Γ) . N = M'[u], where u is an indeterminate commuting with elements of M' and satisfying the single condition f(u) = c. Γ is an extension of the factor group W/K^* by Δ : elements of Γ will be written in the form $[\sigma, \zeta]$ with $\sigma \in \Delta, \zeta \in W/K^*$. Multiplication is then defined by

$$[\sigma, \zeta][\sigma', \zeta'] = [\sigma\sigma', \zeta\zeta'\alpha(\sigma\sigma')^-],$$

where the bar over an element of W denotes the coset modulo K^* to which it belongs. The action of Γ on N is given as follows:

$$a^{[\sigma,\xi]} = a^{\sigma}$$
 for $a \in M'$,
 $u^{[\sigma,\xi]} = u + \delta(\sigma) + \lambda(\xi)$,

where $\lambda(\zeta)$ is the one proper value of d common to all representatives of ζ . Finally, $B = (N, \Gamma, \beta)$ with β easily computed as

$$\beta(\left[\sigma,\zeta\right],\left[\sigma',\zeta'\right]) = \gamma(\zeta,\zeta')\gamma(\zeta\zeta',\alpha(\sigma,\sigma')^{-})\frac{\alpha(\sigma,\sigma')}{z_{\alpha(\sigma,\sigma')}^{-}},$$

where $\{z_i | \zeta \in W/K^*\}$ is some fixed system of representatives of W modulo K^* , and

$$\gamma(\zeta,\zeta') = \frac{z_{\zeta}z_{\zeta'}}{z_{\zeta\zeta'}}$$

We note especially that the range of β is in K.

3. Back to the proof of Theorem 1. E is again a regular purely inseparable extension of K, X a maximal regular subgroup of E^* . We consider the subgroup W of those members of X whose pth power lies in K^* and set Z = K(W).

LEMMA. In E over Z, the group XZ^* is a maximal regular subgroup of E^* .

PROOF. X generates E additively, as before; hence regularity of XZ^* over Z is all that must be proved.

Let $\{x_1, \dots, x_s\}$ and $\{w_1, \dots, w_t\}$ be systems of representatives of X modulo W and of W modulo K^* , respectively. The K-space spanned by the latter is clearly a ring and must coincide with Z. Since $\{x_iw_j|i=1,\dots,s;\ j=1\dots t\}$ is a system of representatives of X modulo K^* , it is linearly independent over K. Hence $\{x_1,\dots,x_s\}$ is linearly independent over Z. This completes the proof because $\{x_1,\dots,x_s\}$ is also a system of representatives of XZ^* modulo Z^* .

We are given a p-algebra A over K containing the field E as a

maximal commutative subring. It is required to show that A also contains a direct sum of fields N with a T-group Γ of automorphisms which is isomorphic to G and induced by the inner automorphisms of A belonging to a system of representatives of X modulo K^* . (Here X is an arbitrary preselected maximal regular subgroup of E^* .) The proof is by induction on the dimension of E over K, the assertion being trivial if the latter is 1.

Let A' be the centralizer of Z in A. A' is central simple over Z, contains E as a maximal commutative subring, and has a smaller dimension than A. We choose the maximal regular subgroup XZ^* of E^* for the application of the induction hypothesis. A' has the structure of a crossed product (M, Δ, α) , where (M, Δ) is a normal ring with $\Delta \simeq XZ^*/Z^*$. Δ is induced by the inner automorphisms of A' belonging to a system of representatives of XZ^* modulo Z^* which could certainly be chosen to coincide with the system $\{x_1 \cdot \cdot \cdot x_s\}$ occurring in the proof of the lemma. This set was previously denoted by $\{y_{\sigma} | \sigma \in \Delta\}$, and $\alpha(\sigma, \tau)$ defined as $y_{\sigma\tau}^{-1} y_{\sigma} y_{\tau}$. Let the elements of Δ be numbered $\sigma_1, \dots, \sigma_s$ in such a way that $y_{\sigma_i} = x_i$. We note that $\alpha(\sigma_i, \sigma_k) \in W$. W being a maximal regular subgroup of Z^* , and A (a central simple algebra containing A' as the centralizer of Z) being a differential extension of A', we apply Theorem 2 to find a normal ring (N, Γ) from which A is produced as a crossed product. The elements of A' whose corresponding inner automorphisms induce Γ are $\{y_{\sigma}z \mid \sigma \in \Delta, z \in W\}$ according to the proof of Theorem 2.

Since K is the center of A, the elements z might as well be restricted to the set $\{w_1, \dots, w_t\}$ of representatives of W modulo K^* . Thus $\Gamma = I(S)$, where $S = \{x_i w_j\}$ is a system of representatives of X modulo K^* . Finally, the map $xK^* \rightarrow Ix$ is a homomorphism from X/K^* onto Γ ; that it is an isomorphism, hence $G \simeq \Gamma$, is most easily seen by noting that $(A:K) = (G:1)^2$.

Theorem 1 is a generalization of one of the central results of [4] (Satz 32), which treats the case where E is a simple extension and G therefore cyclic. Its second formulation, Theorem 1', is intended to give more equal weight to E and N, the former appearing only implicitly in the formula of Theorem 1. It is reminiscent of the simplest p-algebras $(\alpha, \beta]$ studied by H. L. Schmid, Witt, and others, which were generated over K by two symbols u, v with the relations:

$$u^p = \alpha \in K$$
, $v^p - v = \beta \in K$, $u^{-1}vu = v - 1$.

We would set K(u) = E, K(v) = N, and define ϕ by $\phi(\sigma) = uK^*$, σ being the automorphism $v \rightarrow v - 1$ of N. Then $(\alpha, \beta] = E \otimes_{\phi} N$. Whereas criteria for isomorphism and rules about Kronecker products are

known for the algebras $(\alpha, \beta]$, they remain an open question in the general case.

REFERENCES

- 1. K. Hoechsmann, Simple algebras and derivations, Trans. Amer. Math. Soc. (to appear).
- 2. K. Hoechsmann and H. Zassenhaus, On purely inseparable extensions, Illinois J. Math. (to appear).
- 3. O. Teichmüller, Verschränkte Produkte mit Normalringen, Deutsche Math. 1 (1936), 92-102.
 - 4. ——, p-Algebren, Deutsche Math. 1 (1936), 362-388.
- 5. P. Wolf, Algebraische Theorie der galoisschen Algebren, Mathematische Forschungsberichte, III. VEB Deutscher Verlag der Wissenschaften, Berlin, 1956.

University of Notre Dame and Universität Hamburg