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1. Let K be a field of characteristic ¿5^0. By a p-olgebra we mean

a central simple algebra over K whose dimension is a power of ¿.

Although it is known that such an algebra always has a purely in-

separable (over K) splitting field E, the role played by E in the struc-

ture of the algebra has not been clear. In this paper, we intend to

show that essentially all ¿-algebras split by E are obtained by a

natural composition of two constituents: a certain purely inseparable

field E containing E and any abelian normal extension N of K whose

Galois group is related, in a manner to be described, to the structure

of E. We must dwell a little on the nature of these ingredients.

Consider a subgroup X of the multiplicative group E* of E such

that X contains the multiplicative group K* of K. Such a group will

be called regular, if any system of representatives of X modulo K* is

linearly independent over K. E itself is called regular if it is additively

generated by some regular subgroup of £*, which in this case will be

called a maximal regular subgroup. Just below the corollary for Theo-

rem 2 in [2], it was shown that every finite purely inseparable exten-

sion E can be further extended to a regular one E with the same

exponent over K and also finite. In what follows, we require E to be

regular. The field originally given may have to be enlarged to fulfill

this condition, just as a separable field is extended to a normal one

in the theory of crossed products. We assume, therefore that E = E.

It follows at once from Theorem 1 of [2] that the group G(X)

= X/K* associated with a maximal regular subgroup X of E* is

independent of X. There is thus a unique ¿-group G attached to E.

The group X is an extension of K* by G. Hence with the selection

of a maximal regular group X we obtain a cohomology class

XEH2(G, K*). For the sequel let X be fixed.

As for N, it will be a normal extension of F with Galois group

T~G. However, N need not be a field; in general it may be a direct

sum of fields

N = Ni® ■ ■ ■ @ Nn,

with a "T-group" V of automorphisms, as defined in [l], i.e., a group

of automorphisms satisfying the following three conditions.
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I. If <r£r and a keeps the elements of Nt fixed (for any i), then

(7=1.

II. T is transitive on the set of fields Ni, • • • , Nn.

III. If aEN and a is fixed under all elements of T, then aEK.

Teichmüller [3] proved that for aEH2(T, N*) the crossed product

(N, r, a) defined in the usual way is central simple over K and has

all the usual properties. The pair (N, V) will be called a normal ring.1

We can now state our main theorem.

Theorem 1. Let A be a simple algebra of dimension (E:K)2 over

its center K. Then E splits A if and only if Aca(N, T, X) for some

normal ring (N, V) with T^G.

Here X is interpreted as an element of H2(Y, K*) as it can be be-

cause of the isomorphism between G and V.

Before attempting to prove Theorem 1, we shall reformulate it to

bring it into better accord with the crude version given at the outset.

Given a normal ring (N, T), consider an injection </>: T-^E*/K* such

that U„er (/>(<r) is a regular subgroup of E* (it is automatically maxi-

mal). The regularity of E guarantees the existence of such injections,

since r^G.

On the vector space E ®K N, a multiplication is defined by de-

manding that

(1) (x ® u)(y ® v) = (xy ® Wv)       if y G 4>io-).

The resulting algebra will be denoted by E ®¿ N.

Theorem 1'. The class of algebras of the form E ®^, N (for fixed

regular E) coincides with that of p-algebras containing E as a maximal

commutative subring.

It is easily verified that the definition of E ®$ N makes it iso-

morphic to (N, V, X) for suitable X. Indeed, suppose (p:o^>x<,K*.

The nature of <p is such that the set {x«\ <r£r} is a basis of E over K,

and hence a basis of £ ®<¡, N over N. If we write x and u instead of

(x ®l) and (l®u), respectively, the elements of E ®^ N are of the

form

»er

where the u, are arbitrary coefficients from N. The commuting rule

(1) appears as:

x„u = u'x,.

1 Often called "Galois algebra" and extensively studied in [5].
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Finally, let A = U„er x„A*. A is a maximal regular subgroup of E*,

which can be thought of as an extension of K* by either G or T.

Taking the latter point of view, we may regard the factor set

a(<7, t) = -■> (<r, T E T),

as a representative of the cohomology class X.

We have exhibited the structure of a crossed product (N, T, X) in

£®#JV. For reasons of dimension and the simplicity of crossed

products,

£<g> A~(A, r, X).
<t>

Since E is obviously contained in E 0$ N (as the subring E ®K), we

have also proved the "if" part of Theorem 1.

2. For proving the second and more important part of Theorem 1,

the theory of differential extensions, as worked out in [l], is needed.

We recall briefly what it is about. Let Z be a finite extension field of

K such that ZPQK, d be a derivation of Z into Z, whose kernel is

precisely K, and f(x) be the minimal polynomial of d over K. Given

a central simple Z-algebra A, we can extend d to a derivation d of A

into A and find an element c in the kernel of d such that ca — ac

=f(d)(a) for all aEA. The A-algebra (A, d, c), generated by A and
a symbol u such that

(2) ua — au = da,       for all a G A,

and

(3) f(u) = c

is called a differential extension of A by d. It turns out that (A, d, c) is

central simple over K and contains A as the centralizer of Z and that,

conversely, every such A-algebra is of the form (A, d, c+y) with

yEK. It is emphasized that d and d can be chosen in various ways;

in particular, d can always be chosen to be regular, i.e., such that its

proper vectors form a maximal regular subgroup of Z*. (Note that

Z, being of exponent p, is automatically regular.)

Now let A be a crossed product of the normal ring (M, A) over

Z: M = Mx® • • ■ ®Mm, each Mi being a separable extension field of

Z and A being a F-group of automorphisms relative to Z. Let

aEZ2(A, M*) be a 2-cocycle defining A. We now impose a rather

severe condition, namely, that the values a(a, r) lie in some maximal
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regular subgroup of Z*. It is well known that a derivation d of Z into

Z can be constructed whose group of proper vectors coincides with

any given maximal subgroup of Z*, in particular the one containing

the values a(<r, t) (see, for example, [l, Proposition 1.3]). This der-

ivation d will be extended to A as follows.

Since all elements of M are separable over Z, d has a unique exten-

sion to M. If {yff| <r(EA} is the usual Ai-basis for the crossed product

A, the extensions d such that ¿iM)QM are defined by dy„ = ychio-),

with S : A—>M satisfying

(4) d(«(ff> r))/a(er, r) = 6(a)' - 0(<rr) + 5(r).2

The function ß: (o-, x)—>d(a(o-, r))/a(o-, r), as the "logarithmic deriva-

tive" of the multiplicative cocycle a, is an additive cocycle, and (4)

can be satisfied by setting

(5) 5io-) = 11ßiP,a)a<"
pea

with any aEM for which Hpsa a"= 1. If M were a field, the existence

of such an element a would be well known; in our case it can be found

as follows. Let Ai be the subgroup of A leaving M invariant. Clearly,

A = o-iA1Wo-2AiU • ■ ■ UcmAi, where M? = Mi. Furthermore, Ai in-

duces on each subfield Mi its Galois group over Z. We take an ax

from Mi whose trace is 1. Then a? has trace 1 in ¥,•; more precisely,

if the elements of M are represented in the form (xi, • • • , xm) with

XiEMi, we have

E (ai, 0, • • • 0)'*' = (0, • • • , 1, 0 • • • )
pea

with the 1 in the ith place. Hence

m

E iai, o, • • • 0)' - E (0, • • • , 1, 0 • • • ) = 1.
p6A i-1

The preceding paragraph is entirely independent of the condition

imposed on a, whose only purpose is to insure that certain things

are separable over K. For, if öi is not X-separable, a\ will surely be,

and

E(«ï)P = (E«îY = i.
pSA \ p£A       /

In any case, ai can be chosen separable over K. Since each aio, t)

* This observation was made by G. Hochschild (Trans. Amer. Math. Soc. 80

(1955), 146).
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is a proper vector of the regular derivation d, each of the quotients

ß(a, t) is an element of K. Therefore, the function 8 defined by (5)

maps A into the maximal A-separable subring M' of M. Now we can

state

Theorem 2. In the notation introduced above, let B = (A, d, c) be

any differential extension of the crossed product A. Then B is again a

crossed product. More precisely, for suitable choice of d, the ring N

generated in B by M' and an element u satisfying (2), is a direct sum of

fields; the inner automorphisms induced in B by certain proper vectors

of d (d being regarded as a linear transformation of A over M') define a

T-group of automorphisms on N. N is a maximal commutative subring

ofB.

Proof. Let d be defined as an extension of the regular derivation

d of Z, exactly as above. B is generated by A and the element u

mentioned in the theorem, the latter satisfying the polynomial equa-

tion (3). Our first aim is to modify our choice of d so as to make c

lie in M'.

Note that cEM, because ca — ac=f(d)(a) = 0, for aEM, and be-

cause M is maximal commutative in A. If c is not separable over K,

replace d by dp and u by up. It is easily checked that this change

leaves all our conventions concerning d intact. Now f(up) = cp, which

is A-separable.

Assume c = Cx+ ■ ■ ■ +cm, CiEMi. Then

m

A = M'[u] ~ M'[x]/f(x) - c ̂  © Mi [x]/f(x) - a.
•=i

Let f(x) — Ci = (pix(x) • ■ • 4>ir(x) be a factorization into irreducible

polynomials (it will become apparent that the number r is the same

for each i). Setting

A\7= M'i[x]/obii(x),

we have, since (¡ax(x), ■ • ■ , (¡¡ir(x) are all distinct because of the

separability of f(x),

m

N^ ©A(,-l© • • • ® Nir),
t-1

as claimed.

For an element aEA, let la denote the map induced on N by the

inner automorphism b—>a~lba of B.

Let {y, | <r G A} be an Af-basis of A such that xy„ = y„x" for all xEM.

Finally denote by W the group of proper vectors of d in Z*.
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We shall prove that the maps 7(y„z) with zEW form a F-group

of automorphisms of N. In fact

uiy„z) - iy,z)u = d(y„z) = y„z(5(o-) + X),

where X is the proper value belonging to z, so that

7(y,z):tt^« + 5(<r) + X.

For x E M, 7(y<rz) : x—*x*. 7(y„z) is therefore an automorphism of N.

Before verifying conditions I, II, and III for a F-group, we make

an observation:

M i = Z ®k M i, and the restriction of d to Mi is a regular deriva-

tion of Mi over Mi with the same proper values and vectors as d.

Therefore we can use Theorem 6.1 of [l] to conclude that the maps

{7z|zGIF} form a F-group of automorphisms on J7/[m].

(II) To map An onto A.y we use 7(y„z) where a: Mx-+Mi, and

hence M\—*Ml. Then 7y„ maps Ml [u] onto J17/[m], and hence An

onto some Nik. Since I(W)= {lz\zEW} is transitive on the fields

A,i, ■ ■ ■ , NiT in Mi [u], the desired zEW can be found.

(I) Suppose T = 7(y„z) leaves An elementwise fixed. There exist

ZiEW (i= 1 • ■ • r) such that fi=7z, maps An onto Nxi- Since W is

in the center of A andy„£^4, each f,: commutes with t. Let xEM{ [u],

x = Xi+ • • ■ +xr with XiENxi.

x = Z *•• = E (*/ )T = *■
1=1 i-X

Thus t is identity on M{ [u], in particular on Ml ■ Since z commutes

with Ml, a itself is identity on Ml, hence on M\, hence on all of

M:a=\ and t = 7z. Finally t=1, because the automorphisms 7(W)

form a F-group on Af/ [u ] over Af/.

(III) If xEN is fixed under I(W), it must be in M'. If it is fixed

under A as well, it must be in K, since A is a F-group on M over Z,

hence on J17' over K.

We have already observed that the elements {ycz\<rEA, zEW}

are proper vectors of d:

d(y,z) = y.z(d(a) + X).

Finally, we recall that the degree of f(x) equals (Z:K). Hence

(N:K) = (M'[u]:K) = (M':K)(Z:K). This is precisely the dimen-

sion (M: Z)(Z: K) of a maximal commutative subring of the differ-

ential extension B. Theorem 2 is now established.

Remark. It is easy to describe the algebra B of Theorem 2 without

referring   to   the   structure   of   a   differential   extension.   Given
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A = (M, A, a) and having chosen d and c in such a way that cEM'

and dy<r = yrôi<r), as before, we can define a normal ring (A7, T).

Ar= Af'[w], where u is an indeterminate commuting with elements of

M' and satisfying the single condition /(w) = c. T is an extension of

the factor group W/K* by A: elements of V will be written in the

form [a, f] with <r£A, ÇEW/K*. Multiplication is then defined by

where the bar over an element of W denotes the coset modulo i£* to

which it belongs. The action of V on N is given as follows:

al*,t] = a'        for a £ M',

«<'•» = « + 5(<r)+X(f),

where X(f) is the one proper value of d common to all representatives

of f. Finally, B = iN, V, ß) with /3 easily computed as

/      /\

ßi[<r, t], W, f']) = 7(f, r)7(ff, «(*, <r')~) -^-f ,
2»a(ff,ff')

where {zt|f £IF/i£*} is some fixed system of representatives of

W modulo K*, and

We note especially that the range of ß is in K.

3. Back to the proof of Theorem 1. E is again a regular purely

inseparable extension of K, X a maximal regular subgroup of E*.

We consider the subgroup W of those members of X whose ¿th

power lies in K* and set Z = K(W).

Lemma. In E over Z, the group XZ* is a maximal regular subgroup

ofE*.

Proof. X generates E additively, as before; hence regularity of

XZ* over Z is all that must be proved.

Let {xi, • • • , xs} and {wi, ■ ■ • , wt} be systems of representa-

tives of X modulo W and of W modulo K*, respectively. The X-space

spanned by the latter is clearly a ring and must coincide with Z. Since

{x¿Wj|í = l, ■ ■ ■ , s; j=l ■ • ■ t] is a system of representatives of

X modulo K*, it is linearly independent over K. Hence {xi, • • • , x,}

is linearly independent over Z. This completes the proof because

{xi, • • • , x, j is also a system of representatives of XZ* modulo Z*.

We are given a ¿-algebra A over K containing the field E as a
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maximal commutative subring. It is required to show that A also

contains a direct sum of fields A with a F-group T of automorphisms

which is isomorphic to G and induced by the inner automorphisms of

A belonging to a system of representatives of X modulo K*. (Here X

is an arbitrary preselected maximal regular subgroup of E*.) The

proof is by induction on the dimension of E over K, the assertion be-

ing trivial if the latter is 1.

Let A' be the centralizer of Z in A. A' is central simple over Z,

contains E as a maximal commutative subring, and has a smaller

dimension than A. We choose the maximal regular subgroup XZ* of

E* for the application of the induction hypothesis. A' has the struc-

ture of a crossed product (M, A, a), where (M, A) is a normal ring

with A~AZ*/Z*. A is induced by the inner automorphisms of A' be-

longing to a system of representatives of XZ* modulo Z* which could

certainly be chosen to coincide with the system {xi ■ • • xs} occurring

in the proof of the lemma. This set was previously denoted by

{y„|<r£A}, and a(cr, r) defined as y^/y<,yr- Let the elements of A be

numbered ffi, • • • , as in such a way that yti — Xi. We note that

a(ffi, ak)EW. W being a maximal regular subgroup of Z*, and A

(a central simple algebra containing A' as the centralizer of Z) being

a differential extension of A', we apply Theorem 2 to find a normal

ring (A, T) from which A is produced as a crossed product. The

elements of A' whose corresponding inner automorphisms induce V

are {y„z|<r£A, zGPl7} according to the proof of Theorem 2.

Since K is the center of A, the elements z might as well be restricted

to the set {Wx, ■ • ■ , wt} of representatives of W modulo K*. Thus

T = I(S), where 5= {x.îf,} is a system of representatives of X modulo

K*. Finally, the map xi£*—>7x is a homomorphism from X/K* onto

T; that it is an isomorphism, hence G^-T, is most easily seen by not-

ing that (A:K) = (G:\y.

Theorem 1 is a generalization of one of the central results of [4]

(Satz 32), which treats the case where £ is a simple extension and G

therefore cyclic. Its second formulation, Theorem 1', is intended to

give more equal weight to E and A, the former appearing only

implicitly in the formula of Theorem 1. It is reminiscent of the sim-

plest ^-algebras (a, ß] studied by H. L. Schmid, Witt, and others,

which were generated over K by two symbols u, v with the relations:

up = a E K,       vp — v = ß E K,       u~hu = v — 1.

We would set K(u) =E, K(v) = N, and define 4> by (¡¡(a) =uK*, <r be-

ing the automorphism v—*v—\ of N. Then (a, ß] =E ®^ N. Whereas

criteria for isomorphism and rules about Kronecker products are
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known for the algebras (a, ß], they remain an open question in the

general case.
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