ON A THEOREM OF P. J. COHEN AND
H. DAVENPORT

EDWIN HEWITT AND HERBERT S. ZUCKERMAN!

Let G be a compact Abelian group with character group X. P. J.
Cohen [1] has proved that if X is torsion-free, if T is a finite subset of
X consisting of N characters, and [ax] =1 for all x&T, then

©) ) ) g N_ )m

dx > K(
log log N,

where the integral is the Haar integral on G, K is some positive con-
stant not depending on G, and N is sufficiently large. For the case
in which G is the circle group, H. Davenport [2] has improved (0)
by replacing the exponent % by % and the constant K by %. Cohen’s
and Davenport’s arguments can in all likelihood be combined to
yield (0) with exponent 1 for an arbitrary G such that X is torsion-
free.

In this note we apply Davenport’s ideas to prove (0) with exponent
1 not only for the case of torsion-free X but also for the case in which
the torsion subgroup of X is an arbitrary finite Abelian group. By
using care in our estimates we find some fairly large possible K’s,
and we also work out some numerical cases. If X has infinite torsion
subgroup, we show that no inequality like (0) can possibly hold.

Z axx (%)

xeT

THEOREM A. Let G be a compact Abelian group with character group
X. Suppose that the torsion subgroup of X is finite and consists of f ele-
ments. Let T be a set of N distinct elements of X, where N is a positive
- integer. For each x EY, let oy be a complex number such that Iaxl =1.
Then for every number K <(1—e~2)67%/2, we have

o SELAN

dx > K (
log log N
provided that N is sufficiently large, depending upon K and f. For exam-
ple, if K=23/10, (1) holds for all N such that either

N>e® and f< 6or

3\
Ng_(;fz) and f>6.
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Proor. Throughout the proof, we suppose that
(3) N > f.

Let & be the subgroup of X generated by T. Then & is isomorphic
with a direct product of finitely many cyclic groups, say @ infinite
cyclic groups and b finite cyclic groups. Thus every x €T corresponds
to a unique sequence

O] (c1, €5+, Cay Catly * * * 5 Catb),

where ¢, ¢s, + - -, ¢, are arbitrary integers and Cay1, Cat2y * * * , Catd
are nonnegative integers less than some fixed positive integers. We
have b=0 and a>0 since N>f.

We impose a complete ordering on ®. If x and x’ are distinct ele-
ments of ®, if x corresponds to (¢, ¢, - - -, Casb), and x’ corresponds
to (cf, ¢f, + - -, Ciys), then we write x<x' if ¢;<c/ where j is the
first index k& for which ¢, differs from ¢/. We now write T as

(5) {XI’ X2 ° XN} where x1 < x2 < -+ + < xn.

For xE®, let N(x) be the cardinal number of the set {¢€T: ¢ x}.

Following Cohen'’s construction, we now define subsets Py, Py, - - -,
P: of ® and subsets Ty, Ty, - - -, Ti of T, where £ is a positive integer
to be chosen later. Each set T; is to consist of exactly 7 characters,
where 7 is an integer >1. First, we set Po= {x1} and To= . Suppose
that the sets Py, Py, - - - , Py and thesets Ty, Ty, - - -, T;_; have been
defined. We determine the elements xm,®, Xm,®, * * +, Xm® of T; as
follows. We take m{=1. Suppose that the indices m{®, m{, - - -,
m{; have been determined (j<r). Then we want m{’ to be the small-
est index m>m{, such that

(6) XXm;®%m € T

forall x€P;yandallz=1, 2, - - -, j—1. Let us find conditions under
which m exists.

Let x, X', and x’’ be any characters in ®, and let (¢, ¢z, - * *, Cass),
(e, edy -, Chyp), (!, ci', - -+, c\}) be the corresponding se-
quences (4). Now suppose that x’ and x’’ are such that x’ <x'’ and
that ¢ is the smallest index such that ¢; differs from ¢;’. If ¢ is less
than or equal to @, then the inequality

(N xx'x" < x

obtains. We restrict m to be greater than or equal to m{,+f. Thus
the inequality (7) applies to the product appearing in (6). Among
these m's, we count those which must be rejected for violating (6).
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For each 7, we have to reject xn if
Xm = XXm;®P

where Y €T and x €P;_1. Such a ¢ must be less than x in the ordering
(5), and so we reject at most

2 N

XEP ;¢

characters for each 7. Consequently, taking 2=1, 2, - - -, j—1, we
reject at most

G-1 X N

xeP;y
characters. It follows that m? exists if

W

®) mi+ (=1 +G—1) ; N(x) S N,

and that

) m S mpa+(-D+G-1) X NK
x€P;_,

if (8) holds. Supposing that (8) holds for j=r (and hence for j=2, 3,

--,r—1), we sum (9) over j=2,3, - - -, 7 (2=1=7) to obtain
it —1
(10) m S1+G=-DF-1+ > ww.
1 xePy_y

The inequality (10) also holds for 7=1.
We next define the set P,C®:

(11) Pr=Pry U {Xxm@%m;®: x EPL3 1 S i <j S e} U T

The right side of (10) is obviously monotonic increasing in ¢ and is
also monotonic nondecreasing in ! because P, CP;. Hence we can

find the sets of characters Ty, T2, - - -, T« provided that
r(r—1)
@ ttre-nr-+2 > v s
2 xeP;_,

Let us now use (11) to estimate the size of erp,__l N(x). For

1=1,2,---,k—1, (11) implies that
(13) X NK) £ 2 NG+ 2 'NOoxm®xm®) + 2 N,
xeP; X€P; XET)

where D’ denotes the sum over x EP;_; and 1=i<j<r. We chose
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m®, m{®, - .., mY in such a way that the relation (7) holds for the
product xx “’;‘(,,é" Hence we have
, . , r(r—1)
) X NoomO%n®) £ 2V NG S ——— 2 NG
xeP;—y

For x,,,w €Ty, it is obvious that N(x,,w) =m;». Using this and (10),
we write

(l)

2 Nk =
XET; =1
- ) it — 1)
(1) §2{1+(t—1)(f—1)+ — ¥ N}
=1 XEP 1
et 0+ s g,
2 6  xer,,
Combining (13), (14), and (15), we see that
-1
Svws+ 2oy
(16) - P+ 3r2—4+6
P ; N(x)-

The recurrence inequality (16) has the form
Az§do+bAg_.1, b>1, a> 0.
This implies that

A<b’(A +—a—)— 2
'= *Tr_1) bp-1

(1455
= b—1/"

From now on, suppose that
(18) r = max(6,f) and kisan integer =3.
The inequality (17) for I=k—1is

17

> N() = Aps S B (1 +__>

XEPr—1 -1

where
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3 4 372 — 4 6 1
=r+r r + <

3

b =7,
6 4
r3
b—1z2—,
6
rir— 1)
a=r+ (f—1) =

Thus we have

Zaws(5) (1+5m)

r3 k—1 6 7
= | — 1 + =)< r3(k—1) < rs(k‘l).
(5) (+7)=r

We now return to relation (12). A routine computation shows that
(12) holds if

(19) -1 < N.

Thus we can find the sets of characters Ty, Ty, - + +, T: provided that
(18) and (19) hold.

In determining k and r for which (19) holds, it is convenient to take
k=r?; and this choice of k turns out to be satisfactory for the final
arguments of the present proof. Then we take

2 log N \1/2
@ - [Goem) b
3 log log N
where [ - - - ] is the greatest integer symbol and
21) N = e

It is then easy to see that (19) holds.

We next construct by induction a sequence of functions ¢o, ¢1, * - *,
¢x on the group G. Each x in T is a certain x; under the ordering of
(5); we write 8;=ay Iax,.l’l. We define ¢ to be the function Bixi.
For lE { 1,2, .-+, k(}, suppose that ¢;—; has been defined. Following
Davenport [2], we define ¢; by the equality

2 1 ~

1= b1y {1 _———— ﬂm.-“)xm.-")ﬁm,-mim,")}
29

22

() 1

T
Z Bon;PXm, P 5

i=1

+
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in which the sum )’ is over all 4, j such that 1 <i<j<r.

Applying the method of Davenport’s Lemma 2 [2], we make the
following computations. First, for x G, write

3 BBy (2) Xm,® (&) = P + 3.
Then it is clear that

P4 Q2 < (—1—r(r - 1))2 < —l-r‘
“\2 4
and

2
=r+2Re >’ Bon OBim;®Xm,® () Xom; P ()

r
Z ij(‘) Xm, @ (x)

=1
=r-+ 2P.

Hence we have

Since r =6, Davenport’s Lemma 1 shows that if |¢1_1(x)| =1, then

P
o] s|1-= 2280 L sappest,
,a 5/2
Since |¢o| =|Buxa| =1, it follows that |¢:| =1 (¢=0,1, - - -, k).
We also follow Davenport to define
(23) 5= [ 6 T ag@in
¢ xer
The construction of Ty, Tz, + - -, Ti shows that
2
(1= )t £ o
2 o2
2
=(1 -—= )1 1’|'5—,2 2 el
where D’ denotes the sum over x= Xmi®, j=1, 2, - - -, r. Since

|ax| 21, we now have

2 1
@4) I.;(1-—)z,_1+—— (=12 k=1

3/2

Thus we have
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1 2 1
Lz (1= 2) (e L),
2 r? 2
so that

I 1 1/2 2 * 1 1/2
k'—?f g 1——’; Io——z-'f 5

1 1/2 2 y 1 1/2
Ikg—z—f - 1—72' —2—1' —laXII y

and

k
(25) I, = _1_.,1/2 _ (1 — 3) <i Ry - 1>'
2 »2 2

If ¢>21/2, then

hence for 2=r?, we have

1
(26) I > > 1 — e,
Since |¢:| <1, we have

@7) ) )

2 ax(#) [dx 2

XeT

¢,,(x) Z ax(x)dx

XET

1
= I > ? (1 — e 2)rii2,

Using the value for 7 in (20), we obtain

(28)

1 1 2log N \/2 /2
LR P (AL L
2 2 3 log log N,

— (1 — enen (l _ (3 log log N)”’) < log N
2log N log log

853

Now let K be any number such that K <(1 —e~?)6-!/2, Combining

(27) and (28), we see that

(29) ) )

Z axx(%)

X€ET

log N \#
0> k(o
log log N
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for N so large that conditions (3), (18), (21) hold and

3 log log M\V
(30) (1 —e6 12 (1 - (
2log N

Note that 7 is defined by (20) and that k=72
The condition k=3 is implied by r 26. The conditions (3) and (21)

will be trivially satisfied by the following. Since 6 and f are integers,
(18) will be satisfied if
(31) T 2 max (36, = max(54, 1)

———— > — max = max —f2).

log log N 2
If K is taken less than ((1—e2)/6)5'%, say K =3/10, then (30) is
implied by (31). To see how large N must be for (31) to hold, define

u by
N = e2u log u,

Then
log N log 2 log log #\ !
og =2u(°g PR gu) >4
log log N log u log u
since log log # <log u—1. Hence if N=(3f2/2)¥", we have
log N
L op
log log N

Furthermore, if N>¢*'° then log N/log log N>54. Thus if f£6,
(29) holds with K=3/10 for all N>¢%19 The inequality (29) with
K =3/10 also holds for N = (3f2/2)¥" if f>6. This completes the proof
of Theorem A.

THEOREM B. Let G be a compact Abelian group with character group
X, and let T be a finite subgroup of X. Then

(3 | Zxw)|e
XETD
PRrROOF. Let 4={xEG: x(x)=1 for all xEI‘}. It is well known
that the quotient group G/A4 is isomorphic with the character group
of T'. Let X\ denote normalized Haar measure on G. Then we have
A(4)=1/0(). For xo€T and xEG, we have

2 x(®) = 2 xox(®) = xo(x) X x(x).

XeT xer Xer

If > xer x(x)#0, it follows that xo(x) =1. Since xo can be any ele-
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ment of T', we have Y _xer x(x) =0if x € 4. It is trivial that D_er x(%)
=0o(T) if x€A4. The equality (32) follows at once.

Theorem B shows that the number N appearing in Theorem A
must go to infinity as f goes to infinity. It also shows that Theorem A
fails completely if the torsion subgroup of X is infinite. For in this
case X contains finite subgroups of arbitrarily large order, and (32)
shows that nothing like (1) can hold.

It should also be noted that if the torsion subgroup of X is finite,
then it is a direct factor of X. First, the torsion subgroup is always a
pure subgroup of X; and then one can quote, for example, a well-
known theorem of Lo$ [3, (25.21) ]. Thus G is topologically the union
of a finite number of replicas of a connected compact Abelian group.
There appears to be no advantage in using this fact for our proof.
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