ON A THEOREM OF P. J. COHEN AND H. DAVENPORT

EDWIN HEWITT AND HERBERT S. ZUCKERMAN ${ }^{1}$

Let G be a compact Abelian group with character group X. P. J. Cohen [1] has proved that if \mathbf{X} is torsion-free, if Υ is a finite subset of X consisting of N characters, and $\left|\alpha_{\chi}\right| \geqq 1$ for all $\chi \in \Upsilon$, then

$$
\begin{equation*}
\int_{G}\left|\sum_{x \in \mathrm{Y}} \alpha_{\chi} \chi(x)\right| d x>K\left(\frac{\log N}{\log \log N}\right)^{1 / 8} \tag{0}
\end{equation*}
$$

where the integral is the Haar integral on G, K is some positive constant not depending on G, and N is sufficiently large. For the case in which G is the circle group, H. Davenport [2] has improved (0) by replacing the exponent $\frac{1}{8}$ by $\frac{1}{4}$ and the constant K by $\frac{1}{8}$. Cohen's and Davenport's arguments can in all likelihood be combined to yield (0) with exponent $\frac{1}{4}$ for an arbitrary G such that \mathbf{X} is torsionfree.

In this note we apply Davenport's ideas to prove (0) with exponent $\frac{1}{4}$ not only for the case of torsion-free \mathbf{X} but also for the case in which the torsion subgroup of \mathbf{X} is an arbitrary finite Abelian group. By using care in our estimates we find some fairly large possible K 's, and we also work out some numerical cases. If \mathbf{X} has infinite torsion subgroup, we show that no inequality like (0) can possibly hold.

Theorem A. Let G be a compact Abelian group with character group X. Suppose that the torsion subgroup of \mathbf{X} is finite and consists of f elements. Let Υ be a set of N distinct elements of \mathbf{X}, where N is a positive integer. For each $\chi \in \Upsilon$, let α_{x} be a complex number such that $\left|\alpha_{\chi}\right| \geqq 1$. Then for every number $K<\left(1-e^{-2}\right) 6^{-1 / 2}$, we have

$$
\begin{equation*}
\int_{G}\left|\sum_{x \in \mathrm{Y}} \alpha_{\chi} \chi(x)\right| d x>K\left(\frac{\log N}{\log \log N}\right)^{1 / 4} \tag{1}
\end{equation*}
$$

provided that N is sufficiently large, depending upon K and f. For example, if $K=3 / 10$, (1) holds for all N such that either

$$
\begin{align*}
& N>e^{310} \quad \text { and } \quad f \leqq 6 \text { or } \\
& N \geqq\left(\frac{3}{2} f^{2}\right)^{3 f^{2}} \quad \text { and } \quad f>6 \tag{2}
\end{align*}
$$

[^0]Proof. Throughout the proof, we suppose that

$$
\begin{equation*}
N>f \tag{3}
\end{equation*}
$$

Let Φ be the subgroup of \mathbf{X} generated by Υ. Then Φ is isomorphic with a direct product of finitely many cyclic groups, say a infinite cyclic groups and b finite cyclic groups. Thus every $\chi \in \Upsilon$ corresponds to a unique sequence

$$
\begin{equation*}
\left(c_{1}, c_{2}, \cdots, c_{a}, c_{a+1}, \cdots, c_{a+b}\right) \tag{4}
\end{equation*}
$$

where $c_{1}, c_{2}, \cdots, c_{a}$ are arbitrary integers and $c_{a+1}, c_{a+2}, \cdots, c_{a+b}$ are nonnegative integers less than some fixed positive integers. We have $b \geqq 0$ and $a>0$ since $N>f$.

We impose a complete ordering on Φ. If χ and χ^{\prime} are distinct elements of Φ, if χ corresponds to ($c_{1}, c_{2}, \cdots, c_{a+b}$), and χ^{\prime} corresponds to ($c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{a+b}^{\prime}$), then we write $\chi<\chi^{\prime}$ if $c_{j}<c_{j}^{\prime}$ where j is the first index k for which c_{k} differs from c_{k}^{\prime}. We now write Υ as

$$
\begin{equation*}
\left\{\chi_{1}, \chi_{2}, \cdots, \chi_{N}\right\} \quad \text { where } \chi_{1}<\chi_{2}<\cdots<\chi_{N} \tag{5}
\end{equation*}
$$

For $\chi \in \Phi$, let $N(\chi)$ be the cardinal number of the set $\{\psi \in \Upsilon: \psi \leqq \chi\}$.
Following Cohen's construction, we now define subsets $\mathrm{P}_{0}, \mathrm{P}_{1}, \cdots$, P_{k} of Φ and subsets $\mathrm{T}_{0}, \mathrm{~T}_{1}, \cdots, \mathrm{~T}_{k}$ of Υ, where k is a positive integer to be chosen later. Each set T_{j} is to consist of exactly r characters, where r is an integer >1. First, we set $\mathrm{P}_{0}=\left\{\chi_{1}\right\}$ and $\mathrm{T}_{0}=\varnothing$. Suppose that the sets $\mathrm{P}_{0}, \mathrm{P}_{1}, \cdots, \mathrm{P}_{l-1}$ and the sets $\mathrm{T}_{0}, \mathrm{~T}_{1}, \cdots, \mathrm{~T}_{l-1}$ have been defined. We determine the elements $\chi_{m_{1}}{ }^{(l)}, \chi_{m_{2}}{ }^{(l)}, \cdots, \chi_{m_{i}}{ }^{(l)}$ of T_{l} as follows. We take $m_{1}^{(l)}=1$. Suppose that the indices $m_{1}^{(v)}, m_{2}^{(l)}, \cdots$, $m_{j-1}^{()}$have been determined ($j \leqq r$). Then we want $m_{j}^{(\eta)}$ to be the smallest index $m>m_{j-1}^{(i)}$ such that

$$
\begin{equation*}
\chi \chi_{m_{i}}(l) \bar{\chi}_{m} \notin \Upsilon \tag{6}
\end{equation*}
$$

for all $\chi \in \mathrm{P}_{l-1}$ and all $i=1,2, \cdots, j-1$. Let us find conditions under which m exists.

Let χ, χ^{\prime}, and $\chi^{\prime \prime}$ be any characters in Φ, and let ($c_{1}, c_{2}, \cdots, c_{a+b}$), $\left(c_{1}^{\prime}, c_{2}^{\prime}, \cdots, c_{a+b}^{\prime}\right),\left(c_{1}^{\prime \prime}, c_{2}^{\prime \prime}, \cdots, c_{a+b}^{\prime \prime}\right)$ be the corresponding sequences (4). Now suppose that χ^{\prime} and $\chi^{\prime \prime}$ are such that $\chi^{\prime}<\chi^{\prime \prime}$ and that q is the smallest index such that c_{q}^{\prime} differs from $c_{q}^{\prime \prime}$. If q is less than or equal to a, then the inequality

$$
\begin{equation*}
\chi \chi^{\prime} \bar{x}^{\prime \prime}<\chi \tag{7}
\end{equation*}
$$

obtains. We restrict m to be greater than or equal to $m_{j-1}^{(2)}+f$. Thus the inequality (7) applies to the product appearing in (6). Among these m 's, we count those which must be rejected for violating (6).

For each i, we have to reject χ_{m} if

$$
\chi_{m}=\chi \chi_{m_{i}}(\omega) \Psi
$$

where $\psi \in \Upsilon$ and $\chi \in \mathrm{P}_{l-1}$. Such a ψ must be less than χ in the ordering (5), and so we reject at most

$$
\sum_{x \in \mathbf{P}_{l-1}} N(\chi)
$$

characters for each i. Consequently, taking $i=1,2, \cdots, j-1$, we reject at most

$$
(j-1) \sum_{x \in \mathbb{P}_{i-1}} N(\chi)
$$

characters. It follows that $m_{j}^{(t)}$ exists if

$$
\begin{equation*}
m_{j-1}^{(l)}+(f-1)+(j-1) \sum_{x \in \mathrm{P}_{l-1}} N(\chi) \leqq N, \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
m_{j}^{(l)} \leqq m_{j-1}^{(l)}+(f-1)+(j-1) \sum_{x \in \mathbb{P}_{l-1}} N(\chi) \tag{9}
\end{equation*}
$$

if (8) holds. Supposing that (8) holds for $j=r$ (and hence for $j=2,3$, $\cdots, r-1$), we sum (9) over $j=2,3, \cdots, i(2 \leqq i \leqq r)$ to obtain

$$
\begin{equation*}
m_{i}^{(l)} \leqq 1+(i-1)(f-1)+\frac{i(i-1)}{1} \sum_{x \in P_{l-1}} N(x) \tag{10}
\end{equation*}
$$

The inequality (10) also holds for $i=1$.
We next define the set $\mathrm{P}_{l} \subset \Phi$:
(11) $\mathrm{P}_{l}=\mathrm{P}_{l-1} \cup\left\{\chi \chi_{m_{i}}{ }^{(l)} \bar{\chi}_{m_{j}}(l): \chi \in \mathrm{P}_{l-1} ; 1 \leqq i<j \leqq r\right\} \cup \mathrm{T}_{l}$.

The right side of (10) is obviously monotonic increasing in i and is also monotonic nondecreasing in l because $\mathrm{P}_{l-1} \subset \mathrm{P}_{l \text { l }}$. Hence we can find the sets of characters $\mathrm{T}_{1}, \mathrm{~T}_{2}, \cdots, \mathrm{~T}_{k}$ provided that

$$
\begin{equation*}
1+(r-1)(f-1)+\frac{r(r-1)}{2} \sum_{x \in \mathrm{P}_{k-1}} N(\chi) \leqq N \tag{12}
\end{equation*}
$$

Let us now use (11) to estimate the size of $\sum_{x \in \mathbf{P}_{k-1}} N(\chi)$. For $l=1,2, \cdots, k-1$, (11) implies that
(13) $\quad \sum_{x \in \mathrm{P}_{l}} N(\chi) \leqq \sum_{x \in \mathrm{P}_{l-1}} N(x)+\sum^{\prime} N\left(\chi \chi_{m_{i}}{ }^{(l)} \bar{\chi}_{m_{j}}{ }^{(n)}\right)+\sum_{x \in \mathrm{~T}_{l}} N(\chi)$,
where \sum^{\prime} denotes the sum over $\chi \in \mathrm{P}_{l-1}$ and $1 \leqq i<j \leqq r$. We chose
$m_{1}^{(l)}, m_{2}^{(l)}, \cdots, m_{r}^{(l)}$ in such a way that the relation (7) holds for the product $\chi \chi_{m_{i}}^{(n)} \bar{\chi}_{m_{j}}^{(l)}$. Hence we have

$$
\begin{equation*}
\sum^{\prime} N\left(\chi \chi_{m_{i}}{ }^{(l)} \bar{\chi}_{m_{i}}{ }^{(l)}\right) \leqq \sum^{\prime} N(\chi) \leqq \frac{r(r-1)}{2} \sum_{x \in \mathrm{P}_{l-1}} N(\chi) . \tag{14}
\end{equation*}
$$

For $\chi_{m_{i}(l)} \in \mathrm{T}_{l}$, it is obvious that $N\left(\chi_{m_{i}(l)}\right)=m_{i^{(l)}}$. Using this and (10), we write

$$
\begin{align*}
\sum_{x \in \mathrm{~T}_{l}} N(\chi) & =\sum_{i=1}^{r} m_{i}^{(l)} \\
& \leqq \sum_{i=1}^{r}\left\{1+(i-1)(f-1)+\frac{i(i-1)}{2} \sum_{x \in \mathrm{P}_{l-1}} N(\chi)\right\} \tag{15}\\
& =r+\frac{r(r-1)}{2}(f-1)+\frac{r\left(r^{2}-1\right)}{6} \sum_{x \in \mathrm{P}_{l-1}} N(\chi) .
\end{align*}
$$

Combining (13), (14), and (15), we see that

$$
\begin{align*}
\sum_{x \in \mathrm{P}_{l}} N(\chi) \leqq & r+\frac{r(r-1)}{2}(f-1) \tag{16}\\
& +\frac{r^{3}+3 r^{2}-4 r+6}{6} \sum_{\chi \in \mathrm{P}_{l-1}} N(\chi)
\end{align*}
$$

The recurrence inequality (16) has the form

$$
A_{\imath} \leqq a+b A_{\imath-1}, \quad b>1, \quad a>0 .
$$

This implies that

$$
\begin{align*}
A_{l} & \leqq b^{l}\left(A_{0}+\frac{a}{b-1}\right)-\frac{a}{b-1} \tag{17}\\
& \leqq b^{l}\left(1+\frac{a}{b-1}\right) .
\end{align*}
$$

From now on, suppose that

$$
\begin{equation*}
r \geqq \max (6, f) \quad \text { and } \quad k \text { is an integer } \geqq 3 . \tag{18}
\end{equation*}
$$

The inequality (17) for $l=k-1$ is

$$
\sum_{x \in \mathrm{P}_{k-1}} N(x)=A_{k-1} \leqq b^{k-1}\left(1+\frac{a}{b-1}\right)
$$

where

$$
\begin{aligned}
b & =\frac{r^{3}+3 r^{2}-4 r+6}{6} \leqq \frac{1}{4} r^{3}, \\
b-1 & \geqq \frac{r^{3}}{6}, \\
a & =r+\frac{r(r-1)}{2}(f-1) \leqq f r^{2} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\sum_{x \in P_{k-1}} N(\chi) \leqq\left(\frac{r^{3}}{4}\right)^{k-1}(1 & \left.+\frac{6}{r^{3}} f r^{2}\right) \\
& =\left(\frac{r^{3}}{4}\right)^{k-1}\left(1+\frac{6 f}{r}\right) \leqq r^{3(k-1)} \frac{7}{4^{k-1}}<r^{3(k-1)}
\end{aligned}
$$

We now return to relation (12). A routine computation shows that (12) holds if

$$
\begin{equation*}
\boldsymbol{r}^{3 k-1} \leqq N \tag{19}
\end{equation*}
$$

Thus we can find the sets of characters $\mathrm{T}_{1}, \mathrm{~T}_{2}, \cdots, \mathrm{~T}_{k}$ provided that (18) and (19) hold.

In determining k and r for which (19) holds, it is convenient to take $k=r^{2}$; and this choice of k turns out to be satisfactory for the final arguments of the present proof. Then we take

$$
\begin{equation*}
r=\left[\left(\frac{2 \log N}{3 \log \log N}\right)^{1 / 2}\right] \tag{20}
\end{equation*}
$$

where [...] is the greatest integer symbol and

$$
\begin{equation*}
N \geqq e^{e} . \tag{21}
\end{equation*}
$$

It is then easy to see that (19) holds.
We next construct by induction a sequence of functions $\phi_{0}, \phi_{1}, \cdots$, ϕ_{k} on the group G. Each χ in Υ is a certain χ_{j} under the ordering of (5); we write $\beta_{j}=\alpha_{\chi_{j}}\left|\alpha_{\chi_{j}}\right|^{-1}$. We define ϕ_{0} to be the function $\beta_{1} \chi_{1}$. For $l \in\{1,2, \cdots, k\}$, suppose that ϕ_{l-1} has been defined. Following Davenport [2], we define ϕ_{l} by the equality

$$
\begin{align*}
\phi_{l}= & \phi_{l-1}\left\{1-\frac{2}{r^{2}}-\frac{1}{r^{2}} \sum^{\prime} \beta_{m_{i}}(l) \chi_{m_{i}}^{(l)} \bar{\beta}_{m_{j}}(l) \bar{\chi}_{m_{j}}^{(l)}\right\} \tag{22}\\
& +\frac{1}{r^{5 / 2}} \sum_{i=1}^{+} \beta_{m_{j}}(l) \chi_{m_{i}}^{(l)}
\end{align*}
$$

in which the sum Σ^{\prime} is over all i, j such that $1 \leqq i<j \leqq r$.
Applying the method of Davenport's Lemma 2 [2], we make the following computations. First, for $x \in G$, write

$$
\sum^{\prime} \beta_{m_{i}}(l) \bar{\beta}_{m_{j}}{ }^{(l)} \chi_{m_{i}}^{(l)}(x) \bar{\chi}_{m_{j}}(l)(x)=P+i Q .
$$

Then it is clear that

$$
P^{2}+Q^{2} \leqq\left(\frac{1}{2} r(r-1)\right)^{2}<\frac{1}{4} r^{4}
$$

and

$$
\begin{aligned}
\left|\sum_{j=1}^{r} \beta_{m_{j}}{ }^{l()} \chi_{m_{j}}(l)(x)\right|^{2} & =r+2 \operatorname{Re} \sum^{\prime} \beta_{m_{i}}{ }^{l)} \bar{\beta}_{m_{j}}{ }^{(l)} \chi_{m_{i}}(l)(x) \bar{\chi}_{m_{j}}{ }^{(l)}(x) \\
& =r+2 P .
\end{aligned}
$$

Hence we have

$$
P \geqq \frac{r}{2} .
$$

Since $r \geqq 6$, Davenport's Lemma 1 shows that if $\left|\phi_{l-1}(x)\right| \leqq 1$, then

$$
\left|\phi_{l}(x)\right| \leqq\left|1-\frac{2}{r^{2}}-\frac{P+i Q}{r^{3}}\right|+\frac{1}{r^{5 / 2}}(r+2 P)^{1 / 2} \leqq 1 .
$$

Since $\left|\phi_{0}\right|=\left|\beta_{1} \chi_{1}\right|=1$, it follows that $\left|\phi_{l}\right| \leqq 1(l=0,1, \cdots, k)$.
We also follow Davenport to define

$$
\begin{equation*}
I_{l}=\int_{G} \phi_{l}(x) \sum_{x \in \mathbf{r}} \bar{\alpha}_{x} \overline{\bar{x}}(x) d x \tag{23}
\end{equation*}
$$

The construction of $\mathrm{T}_{1}, \mathrm{~T}_{2}, \cdots, \mathrm{~T}_{k}$ shows that

$$
\begin{aligned}
I_{l} & =\left(1-\frac{2}{r^{2}}\right) I_{l-1}+\frac{1}{r^{5 / 2}} \sum_{j=1}^{r} \beta_{m_{j}}(l) \bar{\alpha}_{x m_{j}}(l) \\
& =\left(1-\frac{2}{r^{2}}\right) I_{l-1}+\frac{1}{r^{5 / 2}} \sum^{\prime}\left|\alpha_{x}\right|,
\end{aligned}
$$

where \sum^{\prime} denotes the sum over $\chi=\chi_{m_{j}}{ }^{(l)}, j=1,2, \cdots, r$. Since $\left|\alpha_{x}\right| \geqq 1$, we now have

$$
\begin{equation*}
I_{l} \geqq\left(1-\frac{2}{r^{2}}\right) I_{l-1}+\frac{1}{r^{3 / 2}} \quad(l=1,2, \cdots, k-1) \tag{24}
\end{equation*}
$$

Thus we have

$$
I_{l}-\frac{1}{2} r^{1 / 2} \geqq\left(1-\frac{2}{r^{2}}\right)\left(I_{l-1}-\frac{1}{2} r^{1 / 2}\right)
$$

so that

$$
\begin{aligned}
I_{k}-\frac{1}{2} r^{1 / 2} & \geqq\left(1-\frac{2}{r^{2}}\right)^{k}\left(I_{0}-\frac{1}{2} r^{1 / 2}\right) \\
I_{k} & \geqq \frac{1}{2} r^{1 / 2}-\left(1-\frac{2}{r^{2}}\right)^{k}\left(\frac{1}{2} r^{1 / 2}-\left|\alpha_{\chi_{1}}\right|\right)
\end{aligned}
$$

and

$$
\begin{equation*}
I_{k} \geqq \frac{1}{2} r^{1 / 2}-\left(1-\frac{2}{r^{2}}\right)^{k}\left(\frac{1}{2} r^{1 / 2}-1\right) \tag{25}
\end{equation*}
$$

If $t>2^{1 / 2}$, then

$$
\left(1-\frac{2}{t^{2}}\right)^{t^{2}}<\frac{1}{e^{2}}
$$

hence for $k=r^{2}$, we have

$$
\begin{equation*}
I_{k}>\frac{1}{2}\left(1-e^{-2}\right) r^{1 / 2} \tag{26}
\end{equation*}
$$

Since $\left|\phi_{k}\right| \leqq 1$, we have

$$
\begin{align*}
\int_{G}\left|\sum_{x \in r} \alpha_{x} \chi(x)\right| d x & \geqq\left|\int_{G} \phi_{k}(x) \sum_{x \in \Upsilon} \bar{\alpha}_{\chi} \bar{\chi}(x) d x\right| \tag{27}\\
& =I_{k}>\frac{1}{2}\left(1-e^{-2}\right) r^{1 / 2}
\end{align*}
$$

Using the value for r in (20), we obtain

$$
\begin{align*}
& \frac{1}{2}\left(1-e^{-2}\right) r^{1 / 2}>\frac{1}{2}\left(1-e^{-2}\right)\left(\left(\frac{2 \log N}{3 \log \log N}\right)^{1 / 2}-1\right)^{1 / 2} \tag{28}\\
& \quad=\left(1-e^{-2}\right) 6^{-1 / 2}\left(1-\left(\frac{3 \log \log N}{2 \log N}\right)^{1 / 2}\right)^{1 / 2}\left(\frac{\log N}{\log \log N}\right)^{1 / 2} .
\end{align*}
$$

Now let K be any number such that $K<\left(1-e^{-2}\right) 6^{-1 / 2}$. Combining (27) and (28), we see that

$$
\begin{equation*}
\int_{G}\left|\sum_{x \in \mathrm{~T}} \alpha_{\chi} \chi(x)\right| d x>K\left(\frac{\log N}{\log \log N}\right)^{1 / 4} \tag{29}
\end{equation*}
$$

for N so large that conditions (3), (18), (21) hold and

$$
\begin{equation*}
\left(1-e^{-2}\right) 6^{-1 / 2}\left(1-\left(\frac{3 \log \log N}{2 \log N}\right)^{1 / 2}\right)^{1 / 2} \geqq K \tag{30}
\end{equation*}
$$

Note that r is defined by (20) and that $k=r^{2}$.
The condition $k \geqq 3$ is implied by $r \geqq 6$. The conditions (3) and (21) will be trivially satisfied by the following. Since 6 and f are integers, (18) will be satisfied if

$$
\begin{equation*}
\frac{\log N}{\log \log N} \geqq \frac{3}{2} \max \left(36, f^{2}\right)=\max \left(54, \frac{3}{2} f^{2}\right) . \tag{31}
\end{equation*}
$$

If K is taken less than $\left(\left(1-e^{-2}\right) / 6\right) 5^{1 / 2}$, say $K=3 / 10$, then (30) is implied by (31). To see how large N must be for (31) to hold, define u by

$$
N=e^{2 u \log u}
$$

Then

$$
\frac{\log N}{\log \log N}=2 u\left(\frac{\log 2}{\log u}+1+\frac{\log \log u}{\log u}\right)^{-1} \geqq u
$$

since $\log \log u \leqq \log u-1$. Hence if $N \geqq\left(3 f^{2} / 2\right)^{3 f^{2}}$, we have

$$
\frac{\log N}{\log \log N} \geqq \frac{3}{2} f^{2} .
$$

Furthermore, if $N>e^{310}$, then $\log N / \log \log N>54$. Thus if $f \leqq 6$, (29) holds with $K=3 / 10$ for all $N>e^{310}$. The inequality (29) with $K=3 / 10$ also holds for $N \geqq\left(3 f^{2} / 2\right)^{3 f^{2}}$ if $f>6$. This completes the proof of Theorem A.

Theorem B. Let G be a compact Abelian group with character group X , and let Γ be a finite subgroup of \mathbf{X}. Then

$$
\begin{equation*}
\int_{G}\left|\sum_{x \in \Gamma} \chi(x)\right| d x=1 . \tag{32}
\end{equation*}
$$

Proof. Let $A=\{x \in G: \chi(x)=1$ for all $\chi \in \Gamma\}$. It is well known that the quotient group G / A is isomorphic with the character group of Γ. Let λ denote normalized Haar measure on G. Then we have $\lambda(A)=1 / o(\Gamma)$. For $\chi_{0} \in \Gamma$ and $x \in G$, we have

$$
\sum_{x \in \Gamma} \chi(x)=\sum_{x \in \Gamma} \chi_{0} \chi(x)=\chi_{0}(x) \sum_{x \in \Gamma} \chi(x) .
$$

If $\sum_{x \in \Gamma} \chi(x) \neq 0$, it follows that $\chi_{0}(x)=1$. Since χ_{0} can be any ele-
ment of Γ, we have $\sum_{x \in \Gamma} \chi(x)=0$ if $x \notin A$. It is trivial that $\sum_{x \in \Gamma} \chi(x)$ $=o(\Gamma)$ if $x \in A$. The equality (32) follows at once.
Theorem B shows that the number N appearing in Theorem A must go to infinity as f goes to infinity. It also shows that Theorem A fails completely if the torsion subgroup of \mathbf{X} is infinite. For in this case \mathbf{X} contains finite subgroups of arbitrarily large order, and (32) shows that nothing like (1) can hold.

It should also be noted that if the torsion subgroup of \mathbf{X} is finite, then it is a direct factor of \mathbf{X}. First, the torsion subgroup is always a pure subgroup of \mathbf{X}; and then one can quote, for example, a wellknown theorem of $Ł o s \in[3,(25.21)]$. Thus G is topologically the union of a finite number of replicas of a connected compact Abelian group. There appears to be no advantage in using this fact for our proof.

Bibliography

1. P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212.
2. H. Davenport, On a theorem of P. J. Cohen, Mathematika 7 (1960), 93-97.
3. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vol. I, Grundlehren der Math. Wiss., Band 115, Springer-Verlag, Heidelberg, 1963.

University of Washington

[^0]: Received by the editors July 30, 1962.
 ${ }^{1}$ The research of both authors was supported by the National Science Foundation, under grant NSF G-18838.

