WEAK CONVERGENCE OF BOUNDED SEQUENCES

JOHN RAINWATER

The purpose of this note is to give a criterion for the weak convergence of a bounded sequence in a Banach space. The author wishes to acknowledge extremely useful conversations with E. Bishop, W. Eberlein, K. de Leeuw, V. Pták and W. Rudin.

If B is a Banach space, let $U^* = \{f : f \in B^* \text{ and } ||f|| \le 1\}$ be the unit ball of B^* and let E be the set of extreme points of U^* .

THEOREM. Suppose that $\{x_n\}$ is a bounded sequence in the Banach space B, and let $x \in B$. Then $\{x_n\}$ converges weakly to x if (and only if) $\lim_{n\to\infty} f(x_n) = f(x)$ for each f in E.

PROOF. Assume that $||x_n|| \leq M$, $n=1, 2, \cdots$. It suffices to show that for each g in U^* , $\lim g(x_n) = g(x)$. Now, U^* is convex and compact (we only consider U^* in its weak* topology) and the function Q defined by (Qx)(h) = h(x) for x in B, h in U^* , is a linear isometry of B into $C(U^*)$, the space of continuous functions on U^* with the supremum norm. Suppose that g is an element of U^* . By the Bishop-de Leeuw generalization [1, Theorem 5.6] of a well-known result of Choquet, there exists a σ -ring of subsets of U^* (generated by E and the Baire sets) and a non-negative finite measure μ on this σ -ring such that $\mu(U^*) = \mu(E)$ and $g(y) = \int_{U^*} Qy d\mu$ for each y in B. Since $\mu(U^* \sim E) = 0$, it follows that the functions Qx_n converge to Qx almost everywhere with respect to μ . Since $|Qx_n| \leq ||Qx_n|| = ||x_n|| \leq M$, we conclude from Lebesgue's bounded convergence theorem that $g(x) = \int Qx d\mu = \lim \int Qx_n d\mu = \lim \int Q$

BIBLIOGRAPHY

1. E. Bishop and K. de Leeuw, The representation of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier (Grenoble) 9 (1959), 305-331.

University of Washington

Received by the editors March 18, 1963.