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We are concerned here with four closely related ideals in the Ba-

nach algebra of endomorphisms of a Banach space (cf. [l, pp. 51 ff. ]).

The term operator will be restricted to members of this algebra. Ideals

are assumed to be two-sided.

The most tractable operators, in the sense of actual computation,

are those whose range is spanned by a finite set of elements. Such

operators can be called, briefly, finite operators (the term degenerate

operator is also used). The finite operators form an ideal which is not

closed in any conventional topology. The other three ideals men-

tioned above are closed extensions of the ideal of finite operators.

An operator will be called almost-finite if it is the uniform limit

of a sequence of finite operators.

An operator will be called compact if it takes bounded sets into

sets with a compact closure. The term completely continuous oper-

ator is also used for these operators.

An operator will be called inessential if its image in the quotient

algebra of the algebra of all operators over the almost-finite operators

belongs to the (Jacobson) radical. For a definition of the radical see

[l, Chapter 24], or below in the proof of Theorem 1.

It follows at once from these definitions that the sets of almost-

finite, compact, and inessential operators are all ideals. Moreover,

each of these ideals is closed; the first by definition, the second by a

well known theorem (cf. [l, p. 49]), and the third because the radical

of a Banach algebra is closed and the mapping into a quotient algebra

is continuous.

It is well known that almost-finite operators are compact (cf. [l,

p. 49]). In many cases these two ideals are equal; however, it is still

an open question whether or not this is true in general. It is an im-

mediate consequence of Theorem 1 that compact operators are in-

essential. In some spaces (for example, separable Hubert space which

has only one nontrivial closed ideal) inessential operators are com-

pact; there are others in which they are not equal (cf. the introduc-

tion of [2]), but this question does not appear to have been investi-

gated in detail.
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The quotient algebra of the algebra of all operators over any of

these closed ideals forms a Banach algebra under the usual quotient

norm (cf. [l, pp. 697 ff.]). The quotient algebras over the almost-

finite, compact, and inessential operators can be called the supra-

finite, supra-compact, and essential algebras, respectively. Since the

kernel ideals are ordered by inclusion these quotient algebras form a

chain of homomorphic images. Note that, since the essential algebra

is semi-simple (i.e. has a trivial radical), the process leading from the

almost-finite operators to the essential operators cannot be repeated

to yield further generalizations.

An isolated spectral point is of finite multiplicity if there is a finite

idempotent which commutes with the operator such that the point

in question is not in the spectrum of the operator restricted to the

range of the complementary idempotent; all such spectral points are

necessarily eigenvalues (cf. [l, pp. 177 ff.]). An operator will be de-

scribed as having a Riesz spectrum if its nonzero spectrum consists

of a set (possibly empty) of isolated eigenvalues of finite multiplicity.

It is well known that almost-finite and compact operators have

Riesz spectra (cf. [l, pp. 180 ff. ]). We will prove (Theorem 8) that

inessential operators have Riesz spectra; moreover, the ideal of in-

essential operators is maximal in this respect as is shown in the fol-

lowing theorem.

Theorem 1. Every ideal of operators with Riesz spectra is included in

the inessential operators.

Proof. Suppose X is a member of an ideal of operators with Riesz

spectra; then, for any Y, both XY and YX have Riesz spectra. Sup-

pose X belongs to the resolvent set of X Y; since inverses are preserved

under homomorphisms X is in the resolvent set of xy, the image of X Y

in the supra-finite algebra. On the other hand, if Xj^O is in the spec-

trum of XY there is a finite idempotent P such that X is not in the

spectrum of X Y restricted to the range of I—P. In other words, there

are operators U and V such that

U(\ - (I - P)XY) = I - P = (\- (I - P)XY)V;

and, therefore

U(X - XY) = I - (P + UPXY),

(X - XY)V = I-(P + PXYV).

But P+ UPXY and P+PXYV are finite; hence U and V map into

left and right inverses of X —xy, and X is in the resolvent set of xy.

Thus xy is quasi-nilpotent; in the same way, yx is quasi-nilpotent. The
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radical of the supra-finite algebra is, by definition, the set of all x

such that, for every y, xy and yx are quasi-nilpotent. Thus x is in the

radical and X is inessential.

It should be pointed out that an ideal of operators with Riesz

spectra is no more restrictive than an ideal of operators which have

finite multiplicity (including possibly zero) at some fixed point (say

1) in the spectral plane. This follows because X_1i? will have finite

multiplicity for all X^O and, since (\-R)-l=\-1(l-\-1R)-\ R will

have finite multiplicity at all X^O.

An operator will be called essentially regular if its image in the

essential algebra has an inverse. Essential regularity can be expressed

in terms of finite operators as is shown in the following theorem.

Theorem 2. The following statements are equivalent:

(a) X is essentially regular ;

(h) the image of X in the supra-finite algebra has an inverse ;

(c) there are operators U and V such that I—XU and I— VX are

finite.

Proof, (a) and (b) are equivalent by a standard algebraic theorem

(cf. [l, p. 697]). If (c) holds, (b) is obvious. If (b) holds, there is an

operator T such that

XT = I - F   and    TX = I - G,

where F and G are almost-finite operators. Since F is almost-finite

there is at least one finite operator H such that ||P—H\\ <1; then

(I-(F-H))-1 exists and

/ - XT(I - (F - H))~l = H(I - (F - H))-1

which is finite. The second half of (c) follows in the same way.

The calculus of deficiency indices is useful in this context. For any

operator X, let vX be the maximum number of linearly independent

elements taken into zero by X, and let pX = vX* where X* is the

adjoint operator corresponding to X. If the range of X is closed pX

is the maximum number of linearly independent elements not in the

range of X.

For a detailed exposition of results concerning deficiency indices

see [3]; we will need the following three theorems which we state

without proof.

Theorem 3. X is essentially regular if and only if the range of X is

closed, vX < 00 and pX < ».
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Theorem 4. // X and Y are essentially regular then XY is essentially

regular and

ß(XY) - aX - uY = v(XY) -vX- vY.

Theorem 5. If X is essentially regular then there is a constant jj>0

such that, for all essentially regular Y for which \\ X — Y\\ <r¡,

nX - uY = vX - vY.

The deficiency indices are not sensitive to the addition of an ines-

sential operator as is shown in the following theorem.

Theorem 6. If X is essentially regular and R is inessential then

X+Ris essentially regular and

n(X + R) - ßX = v(X + R) - vX.

Proof. If X is essentially regular then its image in the essential

algebra has an inverse. The image of X+\R, for any scalar X, is the

same as the image of X and, therefore, has an inverse. Thus X+\R,

and in particular X+R, is essentially regular. Now, by Theorem 5,

there is a neighborhood of every X such that

a(X + \'R) - a(X + \R) = v(X + \'R) - v(X + \R)

for all X' in the neighborhood. Consequently, ¡x(X+\R)—v(X+\R)

is independent of X; hence

ß(X + R) - uX = v(X + R) - vX.

The following theorem is particularly useful in some perturbation

problems.

Theorem7 (Nikol'skii's Theorem, cf. [4]).IfX+Rhas an inverse

and R is inessential then there is a finite operator F such that X+F has

an inverse.

Proof. Since X+R has an inverse it is essentially regular, and

moreover, n(X+R) =v(X+R) = 0. Hence, by Theorem 6, X is essen-

tially regular and

uX - vX = u(X + R) - v(X + R) = 0.

The remainder of the proof requires that a finite operator F be con-

structed such that X + F has an inverse. Suppose that 1^1, ipi • • ■ ipm

are a maximal set of linearly independent elements not in the range of

X and that <pi, <pi • ■ ■ <pn are a maximal set of linearly independent

elements taken into zero by X. A set of functionals <p*, <p2* • • • <pn*

can be found by the Hahn-Banach theorem such that 0*0» = 1 and
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4>?<pj = 0 if Í9*j. Since pX — vX it follows that » = mso that the <p*

and tpi can be placed in one-to-one correspondence. Now let

»=i

which defines a finite operator F. Now suppose (X+F)0 = Q, then

O = X0+E<M^,-
<=i

so that, by the definition of the tp{, Çj = XQ = <p?Q and, therefore, 0 = 0.

Furthermore if tp is any element then

m

tp = xe + E «.*<
¿=1

for some element 6 and some scalars a;; 6 can be chosen so that

<p?d = 0 for all «'. Hence

(X + F) (d + E «<&) = XÖ + Ê a,^ = *,
\        »=1       / t=i

so that X+F is one-to-one onto and, therefore, has an inverse.

We have said almost nothing so far about compact operators. One

of the principal points of this paper is that there is very little to say

which is not better said concerning inessential operators. It seems

that most known theorems about compact operators generalize

directly, as did, for example, Theorem 7. We will, however, limit

ourselves to this one example.

Finally we show that inessential operators have a Riesz spectrum.

Theorem 8. If R is inessential then R has a Riesz spectrum.

Proof. Suppose X?¿0, then X= (X — R)+R has an inverse so that,

by Theorem 7, there is a finite operator F such that X — R + F has an

inverse. Hence there is an operator U such that R= U-\-F and X is

not in the spectrum of U. Then by a known perturbation theorem,

U-\-F can have only isolated eigenvalues of finite multiplicity in a

neighborhood of X. Since this holds for arbitrary Xî^O, R has a Riesz

spectrum.

The referee has pointed out that most of these results generalize

immediately to more general linear topological spaces, in particular to

algebras without unit, provided the finite operators are replaced by

some arbitrary ideal (not necessarily closed). The results may well

provide a useful tool in more general spaces but we have retained
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the formulation given above because the finite operators do play such

a distinguished role in applications of the theory.
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