WEAKLY COMPACT B#-ALGEBRAS

A. OLUBUMMO

- 1. A complex Banach algebra A is a compact (weakly compact) algebra if its left and right regular representations consist of compact (weakly compact) operators. Let E be any subset of A and denote by E_l and E_r the left and right annihilators of E. A is an annihilator algebra if $A_l = (0) = A_r$, $I_r \neq (0)$ for each proper closed left ideal I and $I_l \neq (0)$ for each proper closed right ideal I.
- In [6, Theorem 1], it was shown that a semi-simple compact algebra is an annihilator algebra. The first main result of the present paper (Theorem 2.1) is that a semi-simple annihilator algebra is a weakly compact algebra. Thus if \mathfrak{C} , \mathfrak{A} , \mathfrak{A} denote respectively the class of all semi-simple compact algebras, all semi-simple annihilator algebras and all weakly compact algebras, we have $\mathfrak{C} \subset \mathfrak{A} \subset \mathfrak{A}$.

§3 is devoted to the structure theory of weakly compact B^{\sharp} -algebras begun in [7]. A Banach algebra A is a B^{\sharp} -algebra if, given $a \in A$, there exists $a^{\sharp} \neq 0$ in A such that

$$||a^{\sharp}|| \, ||a|| = ||(a^{\sharp}a)^n||^{1/n}, \qquad n = 1, 2, 3, \cdots.$$

In their study of weakly compact B^* -algebras Ogasawara and Yoshinaga [4] obtained the following structure theorem:

THEOREM. The following statements are equivalent for a B*-algebra A:

- (1) A is a weakly compact algebra;
- (2) A is the $B^*(\infty)$ -sum of C^* -algebras, each of which consists of the set of all compact operators on a Hilbert space.

The following result was obtained in [7, Theorem 3.1]:

THEOREM. A Banach algebra A is the algebra F(X) of all uniform limits of operators of finite rank on a reflexive Banach space X if and only if A is a simple, weakly compact B^{\sharp} -algebra with minimal ideals.

Making use of this result and our present Theorem 2.1, we now obtain the following more general result:

THEOREM 3.4. The following statements are equivalent:

- (1) A is a weakly compact B*-algebra with a dense socle;
- (2) A is the $B(\infty)$ -sum of B^{\sharp} -algebras, each of which is the algebra of all uniform limits of operators of finite rank on a reflexive Banach space.

Received by the editors September 4, 1962.

We note that every B^* -algebra is a $B^{\#}$ -algebra and that a weakly compact B^* -algebra automatically has a dense socle [4, p. 15], so that Theorem 3.4 includes the result of Ogasawara and Yoshinaga.

2. Theorem 2.1. A semi-simple annihilator algebra A is a weakly compact algebra.

PROOF. Let Ae, $e^2=e$, be a minimal left ideal of A. Then Ae is a reflexive Banach space since it is also a minimal left ideal of the simple annihilator algebra $(AeA)^-$ [1, Theorem 13]. Let $a \in A$; then [3, p. 483, Corollary 3] right multiplication by ae is a weakly compact mapping of A into Ae, and a fortiori, of A into A. Then by [3, p. 484, Theorem 5], right multiplication by a socle element is weakly compact. Since the socle is dense [1, Theorem 4], it follows [3, p. 483, Corollary 4] that any $x \in A$ is a right (and similarly left) weakly compact element.

3. In this section we prove a structure theorem for weakly compact B^{\sharp} -algebras.

LEMMA 3.1. Let A be a semi-simple Banach algebra with a dense socle. Then every maximal regular left ideal M of A has a nonzero right annihilator.

PROOF. If $\{Ae_{\alpha}\}_{\alpha\in\Omega}$ denotes the set of all the minimal left ideals of A, then there exists $\alpha_0\in\Omega$ such that $Ae_{\alpha_0}\not\subset M$. Further, $M\cap Ae_{\alpha_0}=(0)$ and $M\oplus Ae_{\alpha_0}=A$. Since M is a regular left ideal of A, there exists $j\in A$ such that $xj-x\in M$ for every $x\in A$. For some $a_0\in A$ and $m_0\in M$, we have $j=m_0+a_0e_{\alpha_0}$, $a_0e_{\alpha_0}\neq 0$. Let m be an arbitrary element of M; then $mj-m\in M$ and $mj-ma_0e_{\alpha_0}=mm_0\in M$, from which it follows that $m-ma_0\cdot e_{\alpha_0}\in M$, and therefore $ma_0\cdot e_{\alpha_0}\in M$. However, $ma_0\cdot e_{\alpha_0}\in Ae_{\alpha_0}$ since Ae_{α_0} is a left ideal; thus $ma_0\cdot e_{\alpha_0}\in M\cap Ae_{\alpha_0}=(0)$, and since m is arbitrary in M, the lemma is proved.

Lemma 3.2. Let A be a B*-algebra with a dense socle. If $|\cdot|$ is any norm in A with $|a| \le ||a||$ for each $a \in A$, then $|\cdot| = ||\cdot||$.

PROOF. Suppose that $j \in A$ and j has no left reverse. We show that there exists $a \neq 0$ such that ja = a. In fact, let $J = [yj - y : y \in A]$; then J is a regular left ideal of A which is proper since $j \in J$. Now J is contained in a maximal regular left ideal M and by Lemma 3.1, there exists $a \in A$, $a \neq 0$ such that Ja = (0), i.e. such that yja - ya = 0 for all $y \in A$; i.e., A(ja - a) = (0). Since A, being a B^{\sharp} -algebra is semi-simple, $A_r = (0)$ from which it follows that ja = a. The conclusion now follows exactly as in [2, Theorems 3 and 4].

LEMMA 3.3. A semi-simple Banach algebra A with a dense socle (or with the annihilator property) is the completion of the direct join of all its minimal closed two-sided ideals.

This is essentially Theorem 6 of Bonsall and Goldie [1], under the hypothesis that A be an annihilator algebra. The annihilator property implies that A has a dense socle and this, together with the semi-simplicity of A, is all that is required to prove the theorem.

DEFINITION. Let $\{A_{\alpha}\}_{\alpha\in\Omega}$ denote a set of Banach algebras. The $B(\infty)$ -sum of the A_{α} is the Banach algebra A consisting of all the functions $f(\cdot)$ defined on Ω with $f(\alpha) \in A_{\alpha}$ for each $\alpha \in \Omega$ and such that, given $\epsilon > 0$, there is a finite subset $\alpha_1, \alpha_2, \cdots, \alpha_n$ of Ω such that $||f(\alpha)|| < \epsilon$ for $\alpha \neq \alpha_1, \alpha_2, \cdots, \alpha_n$. We define the algebraic operations in A in the obvious way, e.g. $(f+g)(\alpha) = f(\alpha) + g(\alpha)$, etc. and define the norm by $||f(\cdot)|| = \sup_{\alpha \in \Omega} ||f(\alpha)||$.

We now state our second main result:

THEOREM 3.4. The following statements are equivalent:

- (1) A is a weakly compact B#-algebra with a dense socle.
- (2) A is the $B(\infty)$ -sum of B^{\sharp} -algebras A_{α} , $\alpha \in \Omega$, each of which is the algebra of all uniform limits of operators of finite rank on a reflexive Banach space.

PROOF. (1) \Rightarrow (2). Bonsall [2, Theorem 6] has shown that if A is a B^{\dagger} -annihilator algebra, then A is isomorphic and isometric to the $B(\infty)$ -sum of its minimal closed two-sided ideals A_{α} . For the case of a B^{\dagger} -algebra with a dense socle, Bonsall's proof applies almost word for word if Lemmas 3.2 and 3.3 are borne in mind.

That each A_{α} is a weakly compact algebra in its own right is clear and that A_{α} is simple follows readily from a routine argument which depends essentially on the fact that A is semi-simple. Thus each A_{α} is a simple, weakly compact, B^{\sharp} -algebra with minimal ideals. (That A_{α} contains a minimal left ideal of its own follows from the fact that A_{α} contains a minimal left ideal of A which is also a minimal left ideal of A_{α} .) Hence by [7, Theorem 3.1], each A_{α} is the algebra of all uniform limits of operators of finite rank on a reflexive Banach space.

 $(2) \Rightarrow (1)$. Each A_{α} , being the algebra of all uniform limits of operators of finite rank on a reflexive Banach space, is a B^{\sharp} annihilator algebra [2, Theorem 2]. Since a B^{\sharp} -algebra is semi-simple, the $B(\infty)$ -sum of the A_{α} is, by a result of Rickart's [8, p. 107], an annihilator algebra. That the $B(\infty)$ -sum of an arbitrary class of B^{\sharp} -algebras is a B^{\sharp} -algebra is proved in [5, Lemma 4.7]. Thus the $B(\infty)$ -sum A of the A_{α} is a semi-simple annihilator algebra. From this it follows that

A has a dense socle and by Theorem 2.1, A is weakly compact. This concludes the proof.

COROLLARY. A B*-algebra is an annihilator algebra if and only if it has a dense socle and is a weakly compact algebra.

It is to be noted that one-handed weak complete continuity is enough to prove $(1) \Rightarrow (2)$. In fact, a very slight modification of the proofs of [7, Lemma 3.1 and Theorem 3.1] shows that a simple, left weakly compact B^{\sharp} -algebra with minimal ideals is isomorphic and isometric to the algebra F(X) of all uniform limits of operators of finite rank on a reflexive Banach space X. Since the $B(\infty)$ -sum of the A_{α} in Theorem 3.4 is an annihilator algebra and weakly compact, we obtain the following:

THEOREM 3.5. A right weakly compact B^{\dagger} -algebra with a dense socle is a weakly compact algebra.

REFERENCES

- 1. F. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. 3 (1954), 154-167.
- 2. F. F. Bonsall, A minimal property of the norm in some Banach algebras, J. London Math. Soc. 29 (1954), 156-164.
- 3. N. Dunford and J. Schwartz, *Linear operators*. Part I, Interscience, New York, 1958.
- 4. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach*-Algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15-36.
- 5. A. Olubummo, Left completely continuous B*-algebras, J. London Math. Soc. 32 (1957), 270-276.
- 6. ——, B^f-algebras with a certain set of left completely continuous elements, J. London Math. Soc. 34 (1959), 367–369.
- 7. ——, Operators of finite rank in a reflexive Banach space, Pacific J. Math. 12 (1962), 1023-1027.
 - 8. C. E. Rickart, General theory of Banach algebras, Van Nostrand, New York, 1960.

University College, Ibadan, Nigeria