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A real-valued function / on a topological space X is defined to be

upper (lower) semi-continuous if the set {x : f(x) è X} (resp.

{x:/(x) gXJ) is closed in X for each real number X [3, p. 101 ]. This

notion has been generalized to a function from a topological space

into some set of subsets of another topological space (cf. Hahn [2,

p. 148] or Michael [4, p. 179]). More precisely, letting ft be some col-

lection of nonempty subsets of Y, we say that a function i> from X

to ft is an upper (lower) semi-continuous carrier from X to ft if the set

{x: $(ï)CÎ/) (resp. (x: ^(x)C\U9iA.}) is open in X for each open

set Uin Y. Note that if /is an u.s.c. (l.s.c.) real-valued function, then

$>, defined by $>(x)= {r: rg/(x)}, becomes an u.s.c. (l.s.c.) carrier

from X to the set of all nonempty closed subsets of JE1.

It is well known and easily proven that a real-valued u.s.c. (l.s.c.)

function on a compact space attains its maximum (minimum). How-

ever, this property does not characterize the compactness of the do-

main space. For example, it is easily shown that each u.s.c. (l.s.c.)

function on fi, the first uncountable ordinal, attains its maximum

(minimum).1 The purpose of this paper is to characterize various

kinds of "compactness" in terms of u.s.c. (l.s.c.) carriers "attaining

their maxima (minima)." We say that a carrier $ attains a maximum

(minimum) if the family {$(x):xQX\ has a maximal (minimal)

member with respect to set inclusion.

In the sequel X and Y are always Ti topological spaces, and 2y

is the set of all nonempty closed subsets of Y. If a is any infinite

cardinal, then we say that X is «-compact if each open cover of X

having cardinality ^a admits a finite subcover. And we say that a

net is an a-net if its domain is a, where a may be any ordinal. Then

we obtain the following well-known (cf. Chittenden [l]) and easily

proved lemmas:

Lemma 1. X is a-compact if and only if each ß-net in X has a cluster

point where ß is any ordinal g a.

Lemma 2. A space X is compact if and only if each a-net in X has a

cluster point in X, where a is any ordinal.

Received by the editors March 23, 1962 and, in revised form, August 18, 1962.

1 We consider ordinals and cardinals as defined, for example, in the appendix of

Kelley [3], in which an ordinal is equal to the set of its predecessors and a cardinal

is an ordinal which is not equivalent to any of its predecessors. In fact, our topological

terminology, unless otherwise specified is consistent with that used in Kelley [3].
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Given an infinite cardinal a we say that a space Y is a-separable if

Y has a dense subset of cardinality ¿a; and is hereditarily a-separable

if each subset of Y is a-separable. (If co is the first infinite cardinal,

then "co-separable" is the same as "separable.") Now we obtain our

main result.

Theorem 1. A space X is a-compact if and only if each u.s.c. (l.s.c.)

carrier from X to 2Y, where Y is any hereditarily a-separable space, at-

tains a maximum (minimum).

Proof. We will prove the theorem only for the u.s.c. case; the

l.s.c. case is similar.

Suppose í> is an u.s.c. carrier from an a-compact space X to 2Y,

where F is some hereditarily a-separable space. Let ft= {<3?(x): xEX}

and let Q= {<p(x¿): iEL} be any chain in ft. We will show, using

Zorn's lemma, that there exists ai>(x) such that \J<ZC$(x), which will

complete the proof. Let D he a dense subset of Ue which is well-

ordered by some cardinal ß^a. Now pick aiEL so that $>(xai) con-

tains the first element of D. By transfinite induction, assume we have

chosen for each y<ô where 8<ß an ayEL so that the set C7 = UC

— (U {<p(xa£): %<y})~ is nonempty and $(xay) contains the first ele-

ment of DC\Cy. Now consider 5. If Ca=A, then we terminate the in-

duction. If Cs9^A, we choose a¡EL so that 4>(xaj) contains the first

element of DC\C¡. Let A he the set of such a¡. Then clearly A becomes

a well-ordered subset of L whose cardinality is Sßua, for which we

have UeC (U {$>(x0): a E A })~. By a-compactness, the net

{(a, xa):aEA} has a cluster point xEX. Next, let aEA and

yE$(xa). Since Fis Tx and 4» is u.s.c, the set F= {z: $(2) C F— {y} }

is open. If yEQ(x), then xEV and there exists a b^a such that

$(x&) C F— {y}, whence yE$(xb). But this contradicts the fact that

®(xa)C&(xb). Thus y£<ï>(x) and U{$(xa):aEA} C$(x). Since <î>(x)

is closed, we then have \jQC$(x). (Note: in the l.s.c. case the TVness

of F is not needed.)

Suppose that each u.s.c. carrier from X to 2r, where F is any

hereditarily a-separable space, attains a maximum. Let 8 he the first

cardinal such that X is not S-compact. If S is nonexistent or if a<5,

then X is a-compact. So assume 5 ¿a. By Lemma 1 there exists a 5-

net {(y. xy) : y < 5} in X having no cluster point. Putting, for each

7<5, Vy = X— ({x¡: £^7})_, we obtain a family of open sets

{Vy:y<8} covering X so that V$CVy whenever ¿j<7 and

U { Vf. £ <y} 9eX for any y <8. Now we define $> on X to 2s by putting

$0*0 = {£: £ =7*} where yx is the first ordinal 7 for which xE Vy. To

show that $> is u.s.c. we must show that W' = {x:$(x)CW} is open
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in X for each open set W in 5 (S has the order topology). In case

W=h, we clearly have W' = X. In case W^ô, let 7 be the first mem-

ber of Ô - W. If 7 = 0, then W' = A. If 7 ^ 0, then clearly IF'
= U { F{: £ <7}, which is open in X. Thus, i> is an u.s.c. carrier from

X to 2s (where ô is «-hereditarily separable) which obviously has no

maximum. This contradicts the assumption that 5^a, which finishes

the proof.

Now from the above theorem and Lemma 2 it easily follows that

Theorem 2. A space X is compact if and only if each u.s.c. (l.s.c.)

carrier from X to any 2Y attains a maximum (minimum).

As a corollary of Theorem 2 we of course obtain the result that each

real-valued u.s.c. (l.s.c.) function on a compact space attains its

maximum (minimum). As another consequence: If 2Y is topologized

so that any continuous function/ from X to 2Y becomes also an u.s.c.

(and/or l.s.c.) carrier, then / attains a maximum (and/or minimum)

provided X is compact. (E.g. if F is a bounded metric space, give 2F

the Hausdorff metric topology. See Michael [4] for this and other

possible topologies on 2r.)

Bibliography

1. E. W. Chittenden, On general topology, Trans. Amer. Math. Soc. 31 (1929),

290-321.
2. H. Hahn, Reelle Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1932.

3. J. L. Kelley, General topology, Van Nostrand, New York, 1955.

4. E. A. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71

(1951), 152-182.

University of California at Santa Barbara


