RATIONAL NORMAL MATRICES SATISFYING THE INCIDENCE EQUATION

DAVID HERTZIG

1. Introduction. The construction of a finite projective plane with n points on a line is equivalent to determining an integral $v \times v$ matrix A $(v=n^2+n+1)$ satisfying

$$A^{t}A = {}^{t}AA = nI + S$$

where S is the matrix all of whose coordinates are 1. The Bruck-Ryser Theorem [2] asserts that when $n \equiv 1$ or 2 (mod 4), a necessary and sufficient condition for the existence of a rational A satisfying (1) is that n be a sum of two squares. In [1] Albert gives a construction for such a rational A. The purpose of this note is to give a simpler construction.

2. Notation. We denote I_r the $r \times r$ identity matrix, S_r the $r \times r$ matrix all of whose entries are 1, e_r the $1 \times r$ matrix (row vector) all of whose entries are 1. If $m = \frac{1}{2}(v-1) = \frac{1}{2}n(n+1)$, we denote

$$E = \begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix}$$

so that $E^tE = I_{2m}$ and $E + {}^tE = 0$. We suppose $n = a^2 + b^2$ and let $H = aI_{2m} + bE$ so that $H^tH = nI_{2m}$. Let

$$P = \begin{bmatrix} 0 & \frac{1}{n} e_{2m} H \\ {}^{t}e_{2m} & H \end{bmatrix};$$

then clearly P is a rational $v \times v$ matrix satisfying $P^{t}P = nI_{v} + S_{v}$. Moreover

$${}^{t}PP = nI_{v} + {}^{t}xx$$
 where $x = \left(n \frac{1}{n} e_{2m}H\right)$

is a $1 \times v$ row vector.

3. A rational solution. To obtain a rational solution of (1) it suffices to find a rational orthogonal $v \times v$ matrix T such that if A = PT then ${}^{t}AA = nI_{v} + S_{v}$. But ${}^{t}AA = {}^{t}T{}^{t}PPT = {}^{t}T(nI_{v} + {}^{t}xx)T = nI_{v} + {}^{t}(xT)(xT)$;

Received by the editors July 30, 1962.

hence it suffices to find a rational orthogonal T satisfying ${}^{t}(xT)(xT) = S_{\bullet}$. Since $S_{\bullet} = {}^{t}e_{\bullet}e_{\bullet}$, we must find a rational T satisfying $xT = e_{\bullet}$. Noting that $x^{t}x = e_{\bullet}{}^{t}e_{\bullet} = v$, i.e., the vectors x and e_{\bullet} have the same length, it is apparent that the symmetry with respect to the plane perpendicular to the vector $x - e_{\bullet}$ is the required transformation:

$$T = I_v - \frac{2^t(x-e)(x-e)}{(x-e)^t(x-e)}.$$

REFERENCES

- 1. A. Albert, Rational normal matrices satisfying the incidence equation, Proc. Amer. Math. Soc. 4 (1953), 554-559.
- 2. R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canad. J. Math. 1 (1949), 88-93.

Institute for Defense Analyses