RATIONAL NORMAL MATRICES SATISFYING THE INCIDENCE EQUATION

DAVID HERTZIG

1. Introduction. The construction of a finite projective plane with n points on a line is equivalent to determining an integral $v \times v$ matrix $A\left(v=n^{2}+n+1\right)$ satisfying

$$
\begin{equation*}
A^{t} A={ }^{t} A A=n I+S \tag{1}
\end{equation*}
$$

where S is the matrix all of whose coordinates are 1 . The BruckRyser Theorem [2] asserts that when $n \equiv 1$ or $2(\bmod 4)$, a necessary and sufficient condition for the existence of a rational A satisfying (1) is that n be a sum of two squares. In [1] Albert gives a construction for such a rational A. The purpose of this note is to give a simpler construction.
2. Notation. We denote I_{r} the $r \times r$ identity matrix, S_{r} the $r \times r$ matrix all of whose entries are $1, e_{r}$ the $1 \times r$ matrix (row vector) all of whose entries are 1 . If $m=\frac{1}{2}(v-1)=\frac{1}{2} n(n+1)$, we denote

$$
E=\left(\begin{array}{cc}
0 & I_{m} \\
-I_{m} & 0
\end{array}\right)
$$

so that $E^{t} E=I_{2 m}$ and $E+{ }^{t} E=0$. We suppose $n=a^{2}+b^{2}$ and let $H=a I_{2 m}+b E$ so that $H^{t} H=n I_{2 m}$. Let

$$
P=\left(\begin{array}{cc}
0 & \frac{1}{n} e_{2 m} H \\
{ }^{t} e_{2 m} & H
\end{array}\right)
$$

then clearly P is a rational $v \times v$ matrix satisfying $P^{t} P=n I_{v}+S_{v}$. Moreover

$$
{ }^{t} P P=n I_{v}+{ }^{t} x x \quad \text { where } \quad x=\left(n \frac{1}{n} e_{2 m} H\right)
$$

is a $1 \times v$ row vector.
3. A rational solution. To obtain a rational solution of (1) it suffices to find a rational orthogonal $v \times v$ matrix T such that if $A=P T$ then ${ }^{t} A A=n I_{v}+S_{v}$. But ${ }^{t} A A={ }^{t} T^{t} P P T={ }^{t} T\left(n I_{v}+{ }^{t} x x\right) T=n I_{v}+{ }^{t}(x T)(x T)$;

[^0]hence it suffices to find a rational orthogonal T satisfying ${ }^{t}(x T)(x T)$ $=S_{v}$. Since $S_{v}={ }^{\prime} \varepsilon_{v} e_{v}$, we must find a rational T satisfying $x T=e_{v}$. Noting that $x^{t} x=e_{v}{ }^{t} e_{v}=v$, i.e., the vectors x and e_{v} have the same length, it is apparent that the symmetry with respect to the plane perpendicular to the vector $x-e_{v}$ is the required transformation:
$$
T=I_{v}-\frac{2^{t}(x-e)(x-e)}{(x-e)^{t}(x-e)}
$$

References

1. A. A. Albert, Rational normal matrices satisfying the incidence equation, Proc. Amer. Math. Soc. 4 (1953), 554-559.
2. R. H. Bruck and H. J. Ryser, The nonexistence of certain finite prajective planes, Canad. J. Math. 1 (1949), 88-93.

Institute for Defense Analyses

[^0]: Received by the editors July 30, 1962.

