(2) Is a topological 2-sphere S in E^3 tame if corresponding to each point $p \in S$ there are cones γ_1 and γ_2 , each with vertex at p, such that $\gamma_1 - p$ and $\gamma_2 - p$ lie on opposite sides of S?

BIBLIOGRAPHY

1. R. H. Bing, A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3 , Ann. of Math. (2) 65 (1957), 484-500.

2. M. K. Fort, Jr., A note concerning a decomposition space defined by Bing, Ann. of Math. (2) 65 (1957), 501-504.

University of Georgia

CORRECTION TO "A CHARACTERIZATION OF OF-3 ALGEBRAS"

HIROYUKI TACHIKAWA

J. P. Jans is kind enough to inform me a gap of Necessity proof in my paper appearing in these Proceedings, 13 (1962), 701-703. In this note I shall report Theorem 2 in the paper is however valid by a slight alteration of the proof. In p. 702, the argument between line 9 and line 18 should be replaced by the following: Let e_{λ} be a primitive idempotent of A such that $l(N)e_{\lambda}\neq 0$. Then there exists an element $x \in L$ such that $l(N)e_{\lambda}x \neq 0$ for L is faithful. Denote x by $\sum_{\kappa \neq \lambda} a_{\kappa} e_{\kappa} + a_{\lambda} e_{\lambda}, \ a_{\kappa}, \ a_{\lambda} \in A. \ \text{Since} \ e_{\lambda}(\sum_{\kappa \neq \lambda} a_{\kappa} e_{\kappa}) \subseteq N, \ l(N) e_{\lambda} x$ $=l(N)e_{\lambda}a_{\lambda}e_{\lambda}$ and we have $l(N)e_{\lambda}Le_{\lambda}\neq 0$. Here, suppose $Le_{\lambda}\neq Ae_{\lambda}$. Then $Le_{\lambda} \subseteq Ne_{\lambda}$ for Ne_{λ} is the unique maximal left ideal of Ae_{λ} and it follows $l(N)e_{\lambda}Le_{\lambda}\subseteq l(N)N=0$. But this is a contradiction. Thus we obtain $Le_{\lambda} = Ae_{\lambda}$. Now, let θ be the epimorphism: $L \rightarrow Le_{\lambda} (= Ae_{\lambda})$, defined by $\theta(x) = xe_{\lambda}$ for all $x \in L$. Since Le_{λ} is projective, we have a direct sum decomposition of $L: L_{\lambda} \oplus L'_{\lambda}$, where $L_{\lambda} \approx Ae_{\lambda}$. Then as $\operatorname{Hom}(L, K)$ is monomorphic to P and $\operatorname{Hom}(Ae_{\lambda}, K)$ is injective, $\operatorname{Hom}(Ae_{\lambda}, K)$ is isomorphic to a direct summand of P. Thus if we denote by Λ the set of all indices λ such that $l(N)e_{\lambda} \neq 0$, $\operatorname{Hom}(\sum_{\lambda \in \Lambda} Ae_{\lambda}, K)$ is projective.