
ON THE HYPERBOLIC CAPACITY AND
CONFORMAL MAPPING1

CH. POMMERENKE

1. Let £ be a compact set in D= {\z\ <l}. Tsuji [6] has intro-

duced the hyperbolic capacity of E which can be defined by

Zfi        Zy
l/n(n+l)

(1) caph E = lim      max
1 ZyZp

Also,

(2) min max | f(z) | *'" -» caph E
J      tsE

as n—> » where the minimum is taken over all functions

n

(3) f(z) = II eia<z - z,)/(l - z,z)        (a, real, \z,\   < 1).
i—i

We shall first obtain another formula for caph E. Leja [l] has proved

an analogous formula for the capacity of a plane set.

Lemma. Let E be a compact set in D. For each n = 1, 2, • • •  choose

n + 1 points zo, • ■ • , znin E such that

nnk-*i/ii-**,i
(1-0  ryi/i

becomes maximal. Numerate these points so that

n

An =  II   | ZO - Zy | / |  1 - ZyZo I

(4)

//

c-1

= min II | z„ — z, | /1 1 — ZyZ» \

"      1—2,    Z — Z,

(5) /„(*) = II T— T—T
,_1      1   -   Zy     1    -   ZyZ

then
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(6) max I fn(z) |   = An,

and, as n—=> <*>

A„   —r caph E.

Proof. For \U\ <1, \{*\ <1 we write [&, f2] = |fi-ft|/| Wifrl.
Let zEE. Comparing the system z, zu • • • , zn of points in E with

the maximal system z0, Zi, • • • , zn we see that

1 • [z, zi]    • • •    [z, z„] 1 • [zo, zi]    • • •    [zo, Zn]

[Zl, Z] ■ 1       •   ■   •     [Zl, Zn] [Zl, Zo] ■ 1       •   •   •       [Zl, Zn]

[Zn,  Z][zn,  Zl]       ■   ■   ■       1 [Z„, Zo][zn, Zl]        •   •   •       1.

Hence |/n(z)| úAn, with equality for z = z0, which proves (6). Since

/„ has the form (3) it follows that min/ maxl£E |/(s)| ^An. Therefore

by (2)

lim inf An   è caph E.

On the other hand, (4) implies

(i=0  r^ii

Hence (1) shows that lim sup,,,*, .^"acaph E, and the Lemma fol-

lows.

2. Let £ be a compact set in D = {\ z\ < 1}. Then D\E is an open

set of which exactly one component region G has {|z| =1} as part

of the boundary. I shall give an elementary proof of the following

theorem.

Theorem 1. Let p = caph £>0. If fn(z) is defined by (5) then

(7) g(z) = lim/.(i)w
n—♦ «

exists locally uniformly in H=GVJ{l^\z\ <r} for some r>l, and

g(z) is the smallest function satisfying

(a) g(z) is locally analytic2 and of single-valued modulus in H,

(b) \g(z)\=lfor 1*1=1,
(c) l^\g(z)\^PforzEG,

that is, if h(z) also satisfies these three conditions then \g(z)\ ú\h(z)\

for zEG.

* This means that g(z) is analytic on the universal covering surface of H.
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Furthermore, g(l) = 1 and

(8) f 'd arg g(e») = 2*.
•J 0

If Ç is a boundary point of G that lies on a continuum contained in E

then I g(z) I —>p for a-*f, sEG.
Finally, if E is a continuum then p>0, awá w = g(z) roa|>s G con-

formally and one-to-one onto {p < \ w\ < 1}.

Remarks. Let

u(z) = logtp-11 g(z) I )/log p-\

Then Theorem 1 shows that w(z) is the smallest function satisfying

(a') w(z) is single-valued and harmonic in H,

(b') w(z) = l for ¡«1-1,
(c') 1 ̂ w(z) ^0 for zQG,

that is, if v(z) also satisfies these three conditions then co(z) ̂ v(z).

If the boundary of G consists of a finite number of nondegenerate

continua then co(s) = 0 on the boundary points of G that lie in D.

Hence w(z) is the harmonic measure of {|z| =l} with respect to G.

By (8),

1   f2* d
(9) 1/log P-1 = - — o,(re»)

2ic J 00 dr

Of course, we could have started with the harmonic measure and

then proved (9). But the method applied here is simpler and more

constructive. It does not use set-functions, the solvability of the

Dirichlet problem or the Riemann mapping theorem. The existence

of a function that maps a doubly-connected region onto an annulus

is established (see also [4]).

The following proof uses (with some simplifications) the method of

extremal points developed by Leja [l; 2; 3].

Proof, a. The Lagrange interpolation formula shows that

z( n ■L=i- ft (i - *,*,)) = ft (i - ™).
0=0   \    Vjí¡L     Zp Zy        y^l / V=l

Hence

max
\ v*it \ Zji  —  S»       >=1     1 — ZyZ \ / M + 1

Let ff(z) = minfl,rsgi? |*-fi|/|*-fi|  (for zQG). Since EC{|z| ^a}

for some a < 1 it follows that
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max
(1 - a2)q(z)

2(» + 1)
(nlf^n^^l)i
\    ».= 1 I   1 ZyZ Vf¿fi        Zß Zf     | /

and because of (4)
.        (1 - a2)q(z)

(10) \U(z)\   =    -,     ,uA~
2(m + 1)

We   put   r = 2/(l+a)>l.   Since    \z-z,\/\\-ztz\^(r+a)/(\-ar)

<4/(l-o) for \z\ ter, (5) shows that

(11) \fn(z)\v»<4/(l-a)       (\z\   úr).

h. Let H=GVj{l^\z\ gr} and gn(z) =fn(z)lin. The functions

gn(z) are locally analytic in 22, and ¡gn(z)| is single-valued. By (11)

and Montel's theorem we can find a sequence «* such that g„k(z) con-

verges locally uniformly in H. Let g(z) be the limit function. Since

by the Lemma AlJn—*p, inequality (10) implies \g(z)\ =ip. Also

| g(z) | = 1 for | z\ = 1 so that g(z) satisfies (a), (b) and (c).

Let h(z) he any function satisfying these three conditions, and let

z* be a point in G. Given e>0 we choose a fixed k so large that

|fnt(z*)| >e_<|g(z*)| • Since p > 0 we can take k so that also A„/"lc<pe'.

Then it follows from (6) that |gn*(2)| =pe' for zEE. We choose ana-

lytic curves in G so near to E that their union C separates E from z*

and from {\z\ = 1}, and that | gnk(z)\ upe2' for zEC. Because \h(z)\

2:p for zEG,

I «,*(«) | / | *(«) |   =S P*Vp = e2'

for s£C. Since the left side is =1 for \z\ =1 it follows from the

maximum principle that the inequality holds also for z = z*. Hence

U(**)|   <e'\gnt(z*)\   ^e"\h(z*)\

for every e>0 and therefore | g(z*)\ á | h(z*)|.

Since/„(!) = ! we obtain g(l) = l, and by the argument principle

f   ¿arggn(e") = — f   ¿arg/„(e») = 2x
J o n J o

i 2t 1      /• 2t

(12)

from which (8) follows.

If gn(z) did not converge there would be a limit function h(z) ^g(z)

for some other subsequence of g„ as Montel's theorem shows. From

what we have proved it follows that \h(z)\ si|g(z)|. Reversing the

roles of g and h we also get | g(z) \ è | h(z) \. Hence | h(z) \ = | g (z) \,

and g(l) =h(i) — 1 implies g(z) =h(z). Therefore gn(z)—>g(z) as «—>oo.

c. We assume now that £ is a continuum. We do not know yet that
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p>0. If p = 0 then lim gn(z) might not exist. In this case let g(z) be

the limit function in H for some convergent subsequence of g„ which

exists by (11). The region H is doubly connected, and every simply

closed curve in H is homotopic either to a point or the unit circle.

Therefore the functions g(z) and gn(z) are single-valued because of (8)

and (12). Let c be any point with p<|c| <1. It follows from (12)

that w = gn(z) maps {| z\ = 1} one-to-one onto {| w\ = 1}. Hence

1    f «»'(*) 1    C 1(13) - I *  w    dz =- -dw=l.
2m J |f|_i gn(z) — c 2iriJ lw\^i w — c

We choose analytic curves Cm (m = 1, 2, • • • ) enclosing E so that the

regions between Cm and {| z | = 1 j approach G. By the Lemma we can

choose them so that |gn(z)\ <\c\ on each Cm for sufficiently large n.

Then

(14) -If    -?-<?U-0.— f    —
2iñJ Cn gn((z)

Making w—>«> we obtain from (13) and (14) that

I'M
2ttiJU|_1 g(z) - c 2«J Cm g(z) - c

dz= 1

for all m. Hence g(z) assumes the value c exactly once in G. Therefore

w = g(z) maps G one-to-one onto {p < | w | < 1}.

Suppose that p = 0 were true. Then the inverse function \p(w) of

w = g(z) would be analytic and univalent in {0 < | w| =í 1} - Since

|i^(w)| <1 it would follow that \p(w) is bounded and univalent in

{I w\ á 1}. Since I ip(w) | = 1 for | w\ = 1 this would imply that \p(w)

is a linear function and therefore E a point.

d. Let again E be arbitrary and let f be a boundary point lying on

a continuum B that is contained in E. Let go(z) he the function that

maps the doubly-connected region between B and {\z\ =1} onto

{po<|w| <l}. Let X be such that pl = p. Then Mz)=go(z)x satisfies

the conditions (a), (b) and (c) of Theorem 1. Hence, as we have

already proved, p g | g(z) \ á | h(z) \ — | g0(z) \x. Since for simple topo-

logical reasons | g0(z) \ -^p0 as z—*f, zQG it follows that | g(z) \ —»p.

3. We shall now prove an analogue to a result by Walsh [7] about

the ordinary Green's function. We introduce the hyperbolic metric

in the unit disk D. A circle perpendicular to {| z\ = 1} will be called

a geodesic.

Theorem 2. Let E be a compact set in D with caph E>0, and let



946 CH. pommerenke [December

g(z) be the function defined in Theorem 1. Let L(r)= {z: \g(z)\ =r}

(caph E<r <1). Then at every point of L(r) the inner geodesic normal

to L(r) intersects the hyperbolically convex hull R of E.

Remarks. The hyperbolically convex hull of E is defined as the

smallest closed set R^)E that is convex in the hyperbolic metric in

the sense that together with any two points also the geodesic segment

between these two points belongs to R. The set L(r) is the union of

a finite number of closed analytic curves which may have multiple

points though. At the multiple points g'(z) vanishes. It is easy to

see that all multiple points lie in R (see [8, p. 157]).

Proof. With the notations of Theorem 1 let L„(r) = {z: \ f„(z) \ =rn}.

We first prove that the inner geodesic normal to Ln(r) at any f ELn(r)

intersects R. Suppose this were false. Then f (£R. By a conformai

mapping of the unit disk onto itself we can make f = 0. Then the

inner geodesic normal becomes a straight ray and is separated from

R by a line. We may thus assume that R C {Re z <0} and that the

inner normal lies in {Rez^O}. Writing zr = xv+iy, we have xr<0.

Hence

-log/„(z) _^    i-H2
*_0 .= 1    (Z—   Z„)(l   —   ZyZ)

n       1   _    I   -   |2

—,    ,      (-x, + iy,).

Therefore Re/n'(0)//„(0)>0, and the inner geodesic normal to

•£»(/) = {z. Re logfn(z) = n log r} at 0 lies in {Re z<0} (except for

the point 0), in contradiction to our assumption. Theorem 2 follows

because/„(z)1/n—>g(z) locally uniformly in G.

4. We shall apply Theorem 2 to obtain a result about the distor-

tion under the conformai mapping of an annulus. It is a generaliza-

tion of Theorem 6 in [5]. The closure of the region inside D that lies

between two geodesies with common endpoint f will be called a geo-

desic sector of vertex f.

Theorem 3. Let G be a doubly connected region in D, with {\z\ = 1}

as outer and E as inner boundary. Let w = g(z) be the function that maps

G conformally onto {p < \ w\ < 1} such that g(l) = 1. Let S be the small-

est geodesic sector of vertex 1 that contains E, and let T be the component

of S\E that contains 1. If R is the curve that w = g(z) maps onto the

interval (p, 1) then RCT.
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By the conformai mapping z*= (l+z)/(l—z) of D onto { Rez*>0}

we see that Theorem 3 is equivalent with

Theorem 3*. Let G* be a doubly connected region in {Res*>0}

with {Rez* = 0} and E* as boundaries. Let w = g*(z) map G* con-

formally onto \p < | w\ < 1} such that g*(+ ») = 1. Let S* be the small-

est strip parallel to the real axis that contains £*, and let T* be the

component of S*\E* that contains + <x>. If R* is the curve that w — g*(z)

maps onto the interval (p, 1) then R*QT*.

Proof. Theorem 2 shows that all tangents to R* certainly inter-

sect S*. If S*= {a g Im z* gô} it follows that

(15) lim sup    Im z* g b.

Also, all accumulation points of the left end of R* lie on E*, hence in

{lmz*gö}. Suppose maxz*sB' Im z*>b. Together with (15) this

would imply that the maximum is assumed, say at z = c. But cQ-S*,

and the tangent to R* at c is parallel to S* so that it would not inter-

sect S*. Thus we have shown that Im z*úb, and also Im z*^a, for

z*QS*. Hence R*QS*. Since R* is a curve and contains points with

large real part, R* has to lie in the component T* of S*\E* that con-

tains the point + ».

I want to thank the referee for his helpful suggestions.
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