EXTENSION OF A THEOREM OF A. WINTNER

L. SUYEMOTO AND P. WALTMAN

In [1] A. Wintner established the following theorem.

THEOREM 1. The differential equation

$$(1) y'' + f(x)y = 0$$

cannot have an (L2)-solution if

$$(2) \qquad \int_{0}^{\infty} x^{3} \left| f(x) \right|^{2} dx < \infty$$

(where $\limsup_{x\to\infty} |f(x)| \neq 0$ is allowed).

In this note, Theorem 1 will be extended to the more general equation

(3)
$$y'' + f(x)y^p = 0.$$

THEOREM 2. If (2) holds, and $p \ge 1$, then (3) has no (L^{2p}) -solutions.

For p=1 this reduces to the result of Wintner. First we establish two propositions.

(A) If (3) has an (L^{2p}) -solution then $y'(x) \rightarrow 0$ and $y(x) \rightarrow 0$ as $x \rightarrow \infty$.

The proof of (A) follows that given for similar conclusions in [1].

(B) The existence of an (L^{2p}) -solution of (3) implies the existence of an (L^2) solution.

Integrating (3) twice and using (A)

$$|y(x)| \leq \int_{-\infty}^{\infty} \left[\int_{-u}^{\infty} |f(v)| |y(v)|^{p} dv \right] du \leq \int_{-\infty}^{\infty} u |f(u)| |y(u)|^{p} du.$$

Hence

$$\int_{0}^{\infty} |y(x)|^{2} dx \leq \int_{0}^{\infty} \left[\int_{x}^{\infty} u |f(u)| |y(u)|^{p} du \right]^{2} dx$$

$$\leq \int_{0}^{\infty} \left[\int_{x}^{\infty} u^{2} |f(u)|^{2} du \right] \left[\int_{x}^{\infty} |y(u)|^{2p} du \right] dx$$

$$\leq \left[\int_{0}^{\infty} |y(x)|^{2p} dx \right] \left[\int_{0}^{\infty} x^{3} |f(x)|^{2} dx \right].$$

Both integrals on the right converge, which establishes (B).

Received by the editors September 17, 1962.

Now suppose (2) holds and (3) has an (L^{2p}) -solution for $p \ge 1$. By (A) there exists a T such that |y(t)| < 1 for t > T; hence $|y(t)|^2 \ge |y(t)|^{2p}$ for $p \ge 1$ and t > T. Proceeding as in (4) with such a t as lower limit gives

$$\int_{t}^{\infty} |y(x)|^{2} dx \leq \left[\int_{t}^{\infty} |y(x)|^{2p} dx \right] \left[\int_{t}^{\infty} x^{3} |f(x)|^{2} dx \right]$$
$$\leq \left[\int_{t}^{\infty} |y(x)|^{2} dx \right] \left[\int_{t}^{\infty} x^{3} |f(x)|^{2} dx \right].$$

Since $\int_{1}^{\infty} |y(x)|^2 dx > 0$, it follows that

$$\int_{t}^{\infty} x^{3} \left| f(x) \right|^{2} dx > 1$$

contradicting (2) and establishing the theorem.

BIBLIOGRAPHY

1. A. Wintner, A criterion for the non-existence of (L^2) -solutions of a nonoscillatory differential equation, J. London Math. Soc. 25 (1950), 347-351.

THE MITTE CORPORATION AND SANDIA CORPORATION